Get access

Tailoring Plasmonic Nanostructures for Optimal SERS Sensing of Small Molecules and Large Microorganisms



Local electric fields can be tuned dramatically by varying the diameter of quasi-3D gold plasmonic nanostructure arrays, as indicated by 3D finite-difference time-domain calculations. Utilizing quasi-3D arrays that exhibit a maximum electric field intensity (i.e., a “hot” spot) either at the bottom (gold nanodisks) or on the top (gold film patterned with nanoholes), the optimal surface-enhanced Raman scattering (SERS) sensitivity for the detection of small molecules or large microorganisms can be achieved. The precisely fabricated and optimized SERS-active quasi-3D nanostructure arrays make it possible to quantitatively and reproducibly detect chemical and biological species using SERS, leading to a new sensing platform with molecular specificity based on SERS for many important applications.