SEARCH

SEARCH BY CITATION

Keywords:

  • controlled release;
  • DNA;
  • layer-by-layer capsules;
  • pH-sensitive;
  • polymersomes

Abstract

The formation of a novel drug-delivery carrier for the controlled release of plasmid DNA that comprises layer-by-layer polymer capsules subcompartmentalized with pH-sensitive nanometer-sized polymersomes is reported. The amphiphilic diblock copolymer poly(oligoethylene glycol methacrylate)-block-poly(2-(diisopropylamino)ethyl methacrylate) forms polymersomes at physiological pH, but transitions to unimeric polymer chains upon acidification to cellular endocytic pH. These polymersomes can thus release an encapsulated payload in response to a change in pH from physiological to endocytic conditions. Multicomponent layer-by-layer capsules are formed by exploiting the ability of tannic acid to act as an efficient hydrogen-bond donor for both the polymersomes and poly(N-vinyl pyrrolidone) at physiological pH. These capsules show release of a plasmid DNA payload encapsulated within the polymersome subcompartments in response to changes in pH between physiological and endocytic conditions.