Get access

Co-tunneling Enhancement of the Electrical Response of Nanoparticle Networks

Authors

  • Matthias Pauly,

    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    Search for more papers by this author
  • Jean-François Dayen,

    Corresponding author
    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    • Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.

    Search for more papers by this author
  • Dimitry Golubev,

    1. Institute for Nanotechnology, Karlsruhe Institute of Technology, 76021 Karlsruhe, Germany
    Search for more papers by this author
  • Jean-Baptiste Beaufrand,

    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    Search for more papers by this author
  • Benoit P. Pichon,

    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    Search for more papers by this author
  • Bernard Doudin,

    Corresponding author
    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    • Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France.

    Search for more papers by this author
  • Sylvie Bégin-Colin

    1. Institut de Physique et Chimie des Matériaux de Strasbourg, CNRS-UdS–UMR 7504, 23 rue du Loess, BP 43, 67034 Strasbourg cedex 2, France
    Search for more papers by this author

Abstract

A co-tunneling charge-transfer process dominates the electrical properties of a nanometer-sized “slice” in a nanoparticle network, which results in universal scaling of the conductance with temperature and bias voltage, as well as enhanced spintronics properties. By designing two large (10 μm) electrodes with short (60 nm) separation, access is obtained to transport dominated by charge transfer involving “nanoslices” made of three nanoparticles only. Magnetic iron oxide nanoparticle networks exhibit a magnetoresistance ratio that is not reachable by tunneling or hopping processes, thereby illustrating how such a size-matched planar device with dominant co-tunneling charge-transfer process is optimal for realizing multifunctional devices with enhanced change of conductance under external stimulus.

Get access to the full text of this article

Ancillary