Flexible CoAl LDH@PEDOT Core/Shell Nanoplatelet Array for High-Performance Energy Storage

Authors

  • Jingbin Han,

    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    Search for more papers by this author
  • Yibo Dou,

    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    Search for more papers by this author
  • Jingwen Zhao,

    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    Search for more papers by this author
  • Min Wei,

    Corresponding author
    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    • State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385.
    Search for more papers by this author
  • David G. Evans,

    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    Search for more papers by this author
  • Xue Duan

    1. State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Box 98, Beijing 100029, PR China, Fax: (+86)10-6442-5385
    Search for more papers by this author

Abstract

A CoAl-layered double hydroxide (LDH)@poly(3,4-ethylenedioxythiophene) (PEDOT) core/shell nanoplatelet array (NPA) is grown on a flexible Ni foil substrate as a high-performance pseudocapacitor. The LDH@PEDOT core/shell NPA shows a maximum specific capacitance of 649 F/g (based on the total mass) by cyclic voltammetry (scan rate: 2 mV/s) and 672 F/g by galvanostatic discharge (current density: 1 A/g). Furthermore, the hybrid NPA electrode also exhibits excellent rate capability with a specific energy of 39.4 Wh/kg at a current density of 40 A/g, as well as good long-term cycling stability (92.5% of its original capacitance is retained after 5000 cycles). These performances are superior to those of conventional supercapacitors and LDH NPA without the PEDOT coating. The largely enhanced pseudocapacitor behavior of the LDH@PEDOT NPA electrode is related to the synergistic effect of its individual components: the LDH nanoplatelet core provides abundant energy-storage capacity, while the highly conductive PEDOT shell and porous architecture facilitate the electron/mass transport in the redox reaction.

Ancillary