• artificial spores;
  • cells;
  • cell-in-shell;
  • cytocompatibility;
  • encapsulation


Cells are encapsulated individually within thin and tough shells in a cytocompatible way, by mimicking the structure of bacterial endospores that survive under hostile conditions. The 3D ‘cell-in-shell’ structures—coined as ‘artificial spores'—enable modulation and control over cellular metabolism, such as control of cell division, resistance to external stresses, and surface-functionalizability, providing a useful platform for applications, including cell-based sensors, cell therapy, regenerative medicine, as well as for fundamental studies on cellular metabolism at the single-cell level and cell-to-cell communications. This Concept focuses on chemical approaches to single-cell encapsulation with artificial shells for creating artificial spores, including cross-linked layer-by-layer assembly, bioinspired mineralization, and mussel-inspired polymerization. The current status and future prospects of this emerging field are also discussed.