Single and Polycrystalline Graphene on Rh(111) Following Different Growth Mechanisms

Authors

  • Mengxi Liu,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Yabo Gao,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Yanfeng Zhang,

    Corresponding author
    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    2. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
    • Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author
  • Yu Zhang,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    2. Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Donglin Ma,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Qingqing Ji,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Teng Gao,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Yubin Chen,

    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Zhongfan Liu

    Corresponding author
    1. Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Center for Nanochemistry (CNC), Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author

Abstract

Graphene grown on the same substrate but under different growth conditions may evolve diverse characteristics and disparate growth mechanisms. To explore this issue, graphene is prepared on Rh(111) by both ultrahigh vacuum and ambient-pressure chemical vapor deposition methods and the different growth behaviors, the atomic-scale structures, and the stacking geometry are analysed, mainly by virtue of scanning tunneling microscope. Interestingly, with ultrahigh vacuum chemical vapor deposition growth at 600 °C, a template growth of graphene by the Rh(111) lattice is obtained, reflected with the formation of a uniform graphene moiré. In comparison, with the ambient-pressure chemical vapor deposition at 1000 °C by different quenching processes, monolayer and randomly stacked few-layer polycrystalline graphene is achieved, probably directed by combined surface catalysis and segregation mechanisms. In this case, strong and weak interactions between graphene and Rh substrates are suggested, with the samples prepared under vacuum and ambient-pressure conditions, respectively. This work is expected to contribute greatly to the exploration of interactions between graphene and a substrate, as well as the segregation mechanism of graphene growth on polycrystalline transitional metal substrates.

Ancillary