• boron nitride;
  • carrier mobility;
  • graphene;
  • hybrid materials;
  • phonon scattering


The carrier transport in boron nitride-embedded graphene (BNG) is studied using density functional theory coupled with the Boltzmann transport equation. Under a phonon scattering mechanism, the intrinsic carrier mobility of BNG at room temperature is tunable from 1.7 × 103 to 1.1 × 105 cm2 V−1 s−1 when the bandgap is between 0.38 and 1.39 eV. Some specific BNG materials even show ultrahigh mobility up to 6.6 × 106 cm2 V−1 s−1, and the transport polarity (whether it is electron or hole transport) can be tailored by the application of a uniaxial strain. The wide mobility variation of BNG is attributed to the dependence of the effective mass and the deformation potential constant on the carbon concentration and width. The results indicate that BNG can have both a large on–off ratio and high carrier mobility and is thus a promising material for electronic devices.