Spectroscopic Characterization of the Chiral Structure of Individual Single-Walled Carbon Nanotubes and the Edge Structure of Isolated Graphene Nanoribbons

Authors

  • Daqi Zhang,

    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Juan Yang,

    Corresponding author
    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author
  • Yan Li

    Corresponding author
    1. Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Beijing National Laboratory for Molecular Sciences, Key Laboratory for the Physics and Chemistry of Nanodevices, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author

Abstract

The chiral structure of single-walled carbon nanotubes (SWNTs) and the edge structure of graphene nanoribbons (GNRs) play an important role in determining their electronic and phonon structures. Spectroscopic methods, which require simple sample preparation and cause minimal sample damage, are the most commonly utilized techniques for determining the structures of SWNTs and graphene. In this review the current status of various spectroscopic methods are presented in detail, including resonance Raman, photoluminescence (PL), and Rayleigh scattering spectroscopies, for determination of the chiral structure of individual SWNTs and the edge structure of isolated graphene, especially of graphene nanoribbons. The different photophysical processes involved in each spectroscopic method are reviewed to achieve a comprehensive understanding of the electronic and phonon properties of SWNTs and graphene. The advantages and limitations of each spectroscopic method as well as the challenges in this area are discussed.

Ancillary