Photo-induced Free Radical Modification of Graphene

Authors

  • Liming Zhang,

    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Current affiliation:
    1. These authors contributed equally to this work.
    Search for more papers by this author
  • Lin Zhou,

    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Current affiliation:
    1. These authors contributed equally to this work.
    Search for more papers by this author
  • Mingmei Yang,

    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Zhirong Liu,

    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    Search for more papers by this author
  • Qin Xie,

    Corresponding author
    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author
  • Hailin Peng,

    Corresponding author
    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author
  • Zhongfan Liu

    Corresponding author
    1. Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
    • Center for Nanochemistry, Beijing National Laboratory for Molecular Sciences, State Key Laboratory for Structural Chemistry of Unstable and Stable Species, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China.
    Search for more papers by this author

  • Dedicated to the 20th anniversary of the Center for Nanochemistry at Peking University

Abstract

Graphene has stimulated enormous interest due to its intriguing structure and fascinating properties. The extremely high carrier mobility, mechanical flexibility, and optical transparency as well as the versatility for band structure engineering make graphene a promising candidate for next-generation carbon-based electronic devices. Graphene chemistry, the covalent functionalization of graphene as a 2D giant molecule, offers a promising direction to controllably tailor its properties through the introduction of various chemical decorations. One of the great challenges for graphene functionalization originates from its strong chemical stability, thus highly reactive chemical species are needed as the reactants. In recent years, novel photochemical approaches have been developed to achieve efficient graphene modification and bandgap modulation, following a general concept of “Photochemical Bandgap Engineering of Graphene”. In this article, such kinds of photochemical graphene engineering are demonstrated, together with a brief discussion on the future directions, challenges, and opportunities in this fascinating research area.

Ancillary