Get access

MRI-Visualized, Dual-Targeting, Combined Tumor Therapy Using Magnetic Graphene-Based Mesoporous Silica

Authors


Abstract

Targeting peptide-modified magnetic graphene-based mesoporous silica (MGMSPI) are synthesized, characterized, and developed as a multifunctional theranostic platform. This system exhibits many merits, such as biocompatibility, high near-infrared photothermal heating, facile magnetic separation, large T2 relaxation rates (r2), and a high doxorubicin (DOX) loading capacity. In vitro and in vivo results demonstrate that DOX-loaded MGMSPI (MGMSPID) can integrate magnetic resonance imaging, dual-targeting recognition (magnetic targeting and receptor-mediated active targeting), and chemo-photothermal therapy into a single system for a visualized-synergistic therapy of glioma. In addition, it is observed that the MGMSPID system has heat-stimulated, pH-responsive, sustained release properties. All of these characteristics would provide a robust multifunctional theranostic platform for visualized glioma therapy.

Ancillary