Epirubicin-Loaded Superparamagnetic Iron-Oxide Nanoparticles for Transdermal Delivery: Cancer Therapy by Circumventing the Skin Barrier



The transdermal administration of chemotherapeutic agents is a persistent challenge for tumor treatments. A model anticancer agent, epirubicin (EPI), is attached to functionalized superparamagnetic iron-oxide nanoparticles (SPION). The covalent modification of the SPION results in EPI–SPION, a potential drug delivery vector that uses magnetism for the targeted transdermal chemotherapy of skin tumors. The spherical EPI–SPION composite exhibits excellent magnetic responsiveness with a saturation magnetization intensity of 77.8 emu g−1. They feature specific pH-sensitive drug release, targeting the acidic microenvironment typical in common tumor tissues or endosomes/lysosomes. Cellular uptake studies using human keratinocyte HaCaT cells and melanoma WM266 cells demonstrate that SPION have good biocompatibility. After conjugation with EPI, the nanoparticles can inhibit WM266 cell proliferation; its inhibitory effect on tumor proliferation is determined to be dose-dependent. In vitro transdermal studies demonstrate that the EPI–SPION composites can penetrate deep inside the skin driven by an external magnetic field. The magnetic-field-assisted SPION transdermal vector can circumvent the stratum corneum via follicular pathways. The study indicates the potential of a SPION-based vector for feasible transdermal therapy of skin cancer.