SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Goldberg D. Genetic Algorithms in Search, Optimization, and Machine Learning. Addison Wesley: New York, 1989.
  • 2
    Bäck T, Fogel D, Michalewicz Z (eds). Handbook of Evolutionary Computation. Oxford University Press: Bristol, UK, 1997.
  • 3
    Alba E, Almeida F, Blesa M, Cabeza J, Cotta C, Díaz M, Dorta I, Gabarró J, León C, Luna J, Moreno L, Pablos C, Petit J, Rojas A, Xhafa F. MALLBA: a library of skeletons for combinatorial optimisation. Parallel Computing 2006; 32(5-6):415440.
  • 4
    Cahon S, Talbi E-G, Melab N. ParadisEO: a framework for parallel and distributed metaheuristics. Journal of Heuristics 2004; 10(3):357380.
  • 5
    White DR. Software review: the ECJ toolkit. Genetic Programming and Evolvable Machines 2012; 13(1):6567.
  • 6
    TIOBE Software. Tiobe programming community index, 2013. [online] http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html [last accessed March 2013].
  • 7
    Grefenstette JJ. GENESIS: a system for using genetic search procedures. Proceedings of the 1984 Conference on Intelligent Systems and Machines, Rochester, MI, USA, 1984; 161165.
  • 8
    Whitley D. The GENITOR algorithm and selection pressure: why rank-based allocation of reproductive trials is best. In 3rd Int. Conf. on Genetic Algorithms, Schaffer JD (ed.). Morgan Kaufmann: Fairfax, Virginia, USA, 1989; 116121.
  • 9
    Nicolau M. Application of a simple binary genetic algorithm to a noiseless testbed benchmark. GECCO 2009, Montreal, Canada, 2009; 24732478.
  • 10
    White DR, Arcuri A, Clark JA. Evolutionary improvement of programs. IEEE Transactions on Evolutionary Computation 2011; 15(4):515538.
  • 11
    Cantú-Paz E. On random numbers and the performance of genetic algorithms. GECCO ’02, New York, USA, 2002; 311318.
  • 12
    Ribeiro C, Souza R, Vieira C. A comparative computational study of random number generators. Pacific Journal of Optimization 2011; 1(3):565578.
  • 13
    Nesmachnow S, Luna F, Alba E. Time analysis of standard evolutionary algorithms as software programs. International Conference on Intelligent Systems Design and Applications (ISDA), Córdoba, Spain, 2011; 271276.
  • 14
    Kellerer H, Pferschy U, Pisinger D. Knapsack Problems. Springer: Berlin, Germany, 2004.
  • 15
    Kauffman S, Levin S. Towards a general theory of adaptive walks on rugged landscapes. Journal of Theoretical Biology 1987; 128(1):1145.
  • 16
    Nesmachnow S, Cancela H, Alba E. A parallel micro evolutionary algorithm for heterogeneous computing and grid scheduling. Applied Soft Computing 2012; 12(2):626639.
  • 17
    Alba E, Luque G, Nesmachnow S. Parallel metaheuristics: recent advances and new trends. International Transactions in Operational Research 2013; 20(1):148.
  • 18
    Graham S, Kessler P, McKusick M. Gprof: a call graph execution profiler. SIGPLAN Notices 2004; 39(4):4957.
  • 19
    Laumanns M, Thiele L, Zitzler E. Running time analysis of multiobjective evolutionary algorithms on pseudo-boolean functions. IEEE Transactions on Evolutionary Computation 2004; 8(2):170182.
  • 20
    Oliveto P, He J, Yao X. Time complexity of evolutionary algorithms for combinatorial optimization: a decade of results. International Journal of Automation and Computing 2007; 4: 281293.
  • 21
    Witt C. Runtime analysis of the (μ+1) EA on simple pseudo-boolean functions. Evolutionary Computation 2006; 14: 6586.
  • 22
    Zhou Y, He J. A runtime analysis of evolutionary algorithms for constrained optimization problems. IEEE Transactions on Evolutionary Computation 2007; 11(5):608619.
  • 23
    Alba E, Ferretti E, Molina J. The influence of data implementation in the performance of evolutionary algorithms. In 11 th Int. Conf. on Computer Aided Systems Theory, Vol. 4739, Moreno-Díaz R, Pichler F, Quesada-Arencibia A (eds), Lecture Notes in Computer Science, Springer: Las Palmas de Gran Canaria, Spain, 2007; 764771.
  • 24
    Merelo JJ, Romero G, Arenas M, Castillo P, Mora A, Laredo JL. Implementation matters: programming best practices for evolutionary algorithms. In Advances in Computational Intelligence, Vol. 6692, Cabestany J, Rojas I, Joya G (eds), Lecture Notes in Computer Science, Springer: Berlin/Heidelberg, 2011; 333340.
  • 25
    Wall M. GAlib: a C++ library of genetic algorithm components. Technical report, Mechanical Engineering Department, Massachusetts Institute of Technology, 1996.
  • 26
    Chen T, He J, Sun G, Chen G, Yao X. A new approach for analyzing average time complexity of population-based evolutionary algorithms on unimodal problems. Transactions on Systems, Man, and Cybernetics Part B 2009; 39(5):10921106.
  • 27
    Johannsen D, Kurur P, Lengler J. Can quantum search accelerate evolutionary algorithms? In Proceedings of the 12th annual conference on Genetic and evolutionary computation, GECCO ’10, ACM: New York, NY, USA, 2010; 14331440.
  • 28
    Kunasol N, Suwannik W, Chongstitvatanat P. 32 solving one-million-bit problems using lzwga. Int. Symposium on Information and Communication Technologies, Petaling Jaya, Malaysia, 2006; 3236.
  • 29
    Lu G, Li J, Yao X. Fitness-probability cloud and a measure of problem hardness for evolutionary algorithms. In Proceedings of the 11th European conference on Evolutionary computation in combinatorial optimization, EvoCOP’11, Springer-Verlag: Berlin, Heidelberg, 2011; 108117.
  • 30
    Sudholt D. Theory of swarm intelligence. In Proceedings of the 14th international conference on Genetic and evolutionary computation companion, GECCO Companion ’12, ACM: New York, NY, USA, 2012; 12151238.
  • 31
    Sastry K, Goldberg D, Llora X. Towards billion-bit optimization via a parallel estimation of distribution algorithm. In Proc. of the 9th annual conference on Genetic and Evolutionary Computation, Lipson H (ed.), GECCO'07, ACM: New York, NY, USA, 2007; 577584.
  • 32
    Suwannik W, Chongstitvatana P. Solving one-billion-bit noisy onemax problem using estimation distribution algorithm with arithmetic coding. Proceedings of the IEEE Congress on Evolutionary Computation, Hong Kong, China, 2008; 12031206.
  • 33
    Sheskin DJ. Handbook of Parametric and Nonparametric Statistical Procedures. Chapman & Hall/CRC; 4 edition: Boca Raton, FL, USA, 2007.
  • 34
    Detlefs D, Dosser A, Zorn B. Memory allocation costs in large C and C++ programs. Software – Practice and Experience 1994; 24(6):527542.
  • 35
    Hoare CAR. Quicksort. The Computer Journal 1962; 5(1):1015.
  • 36
    Knuth D. The Art of Computer Programming, Volume II: Seminumerical Algorithms. Addison-Wesley: Boston, MA, USA, 1981.
  • 37
    Skiena S. The Algorithm Design Manual (2. ed.) Springer: New York, NY, USA, 2008.
  • 38
    Bentley J, McIlroy M. Engineering a sort function. Software - Practice and Experience 1993; 23(11):12491265.
  • 39
    Loosemore S, Stallman R, McGrath R, Oram A, Drepper U. The GNU C library reference manual. Available at http://www.gnu.org/software/libc/manual/pdf/libc.pdf [last accessed July 2013].
  • 40
    Marsaglia G. Random number generators. Journal of Modern Applied Statistical Methods 2003; 2(1):213.
  • 41
    Kirkpatrick S, Stoll E. A very fast shift-register sequence random number generator. Journal of Computational Physics 1981; 40(2):517526.
  • 42
    Matsumoto M, Nishimura T. Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator. ACM Transactions on Modeling and Computer Simulation 1998; 8: 330.
  • 43
    Saito M, Matsumoto M. Tiny Mersenne Twister (TinyMT): a small-sized variant of Mersenne Twister, 2011. http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/TINYMT [last accessed January 2012].
  • 44
    Brundage M. Random number generation. R250/R251, 2012. http://www.qbrundage.com/michaelb/pubs/essays/random_number_generation.html [last accessed January 2012].
  • 45
    Graham R, Lawler J, Lenstra E, Kan A. Optimization and approximation in deterministic sequencing and scheduling: a survey. Annals of Discrete Mathematics 1979; 5: 287326.
  • 46
    Nesmachnow S, Cancela H, Alba E. Heterogeneous computing scheduling with evolutionary algorithms. Soft Computing 2010; 15(4):685701.
  • 47
    da Silva CA, Climaco J, Figueira J. A scatter search method for the bi-criteria multi-dimensional 0,1-knapsack problem using surrogate relaxation. Journal of Mathematical Modelling and Algorithms 2004; 3: 183204.
  • 48
    Pisinger D. Core problems in knapsack algorithms. Operations Research 1999; 47: 570575.
  • 49
    Merz P, Freisleben B. On the effectiveness of evolutionary search in high-dimensional NK-landscapes. The 1998 IEEE International Conference on Evolutionary Computation, Anchorage, Alaska, USA, 1998; 741745.
  • 50
    Ali S, Siegel H, Maheswaran M, Ali S, Hensgen D. Task execution time modeling for heterogeneous computing systems. Proc. of the 9th Heterogeneous Computing Workshop, Washington, DC, USA, 2000; 185199.