Effect of the Heat Treatment on the Chromium Partition in Cr-Containing Industrial and Synthetic Slags



In the present work, the effects of the slag composition and heat-treatment conditions on the phase relationships in a number of Cr-containing industrial and synthetic slags were investigated with a view to control the precipitation of Cr-spinel in the slag phase. Gas/slag equilibrium technique was used for the chromium partition and the phase relationship study. The phase relationships in synthetic slags and industrial EAF slags supplied by Swedish steelmaking plants have been investigated experimentally in the temperature range of 1473–1873 K. The slags were re-melted, slow-cooled to, and soaked at targeted temperatures in controlled atmosphere. Two different heat-treatment sequences were used in the present experiments. The oxygen partial pressure (math formula) was maintained by a suitable mixture of CO and CO2 gases. Phases present and their compositions in the quenched slags were studied using X-ray diffractometry (XRD) and scanning electron microscopy (SEM) coupled with energy dispersive spectroscopy (EDS). The chromium content in the phases present was analyzed using wavelength-dispersive spectrometer (WDS). Chromium partition was found to depend on the heat-treatment temperature.