• p21waf1/cip;
  • G1/S checkpoint;
  • Neural stem cells;
  • Ionizing radiation;
  • DNA damage response;
  • Cell cycle


The cyclin-dependent kinase inhibitor p21waf1/cip mediates the p53-dependent G1/S checkpoint, which is generally considered to be a critical requirement to maintain genomic stability after DNA damage. We used staggered 5-ethynyl-2′deoxyuridine/5-bromo-2′-deoxyuridine double-labeling in vivo to investigate the cell cycle progression and the role of p21waf1/cip in the DNA damage response of neural stem and progenitor cells (NSPCs) after exposure of the developing mouse cortex to ionizing radiation. We observed a radiation-induced p21-dependent apoptotic response in migrating postmitotic cortical cells. However, neural stem and progenitor cells (NSPCs) did not initiate a p21waf1/cip1-dependent G1/S block and continued to enter S-phase at a similar rate to the non-irradiated controls. The G1/S checkpoint is not involved in the mechanisms underlying the faithful transmission of the NSPC genome and/or the elimination of critically damaged cells. These processes typically involve intra-S and G2/M checkpoints that are rapidly activated after irradiation. p21 is normally repressed in neural cells during brain development except at the G1 to G0 transition. Lack of activation of a G1/S checkpoint and apoptosis of postmitotic migrating cells after DNA damage appear to depend on the expression of p21 in neural cells, since substantial cell-to-cell variations are found in the irradiated cortex. This suggests that repression of p21 during brain development prevents the induction of the G1/S checkpoint after DNA damage. STEM CELLS 2012;30:537–547