• 1
    Sutherland HJ, Lansdorp PM, Henkelmann DH et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 1990; 87: 35843588.
  • 2
    Fei XM, Wu YJ, Chang Z et al. Co-culture of cord blood CD34(+) cells with human BM mesenchymal stromal cells enhances short-term engraftment of cord blood cells in NOD/SCID mice. Cytotherapy 2007; 9: 338347.
  • 3
    Huang GP, Pan ZJ, Jia BB et al. Ex-vivo expansion and transplantation of hematopoietic stem/progenitor cells supported by mesenchymal stem cells from umbilical cord blood. Cell Transplant 2007; 16: 579585.
  • 4
    Wang JF, Wang LJ, Wu YF et al. Mesenchymal stem/progenitor cells in human umbilical cord blood as support for ex vivo expansion of CD34+ hematopoietic stem cells and for chondrogenic differentiation. Haematologica 2004; 89: 837844.
  • 5
    Noort WA, Kruisselbrink AB, in't Anker PS et al. Mesenchymal stem cells promote engraftment of human umbilical cord blood-derived CD34(+) cells in NOD/SCID mice. Exp Hematol 2002; 30: 870878.
  • 6
    Chan SL, Choi M, Wnendt S et al. Enhanced in vivo homing of uncultured and selectively amplified cord blood CD34(+) cells by cotransplantation with cord blood-derived unrestricted somatic stem cells. Stem Cells 2007; 25: 529536.
  • 7
    Brunstein CG, Baker KS, Wagner JE. Umbilical cord blood transplantation for myeloid malignancies. Curr Opin Hematol 2007; 14: 162169.
  • 8
    Barker JN, Weisendorf DJ, Wagner JE. Creation of a double chimera after the transplantation of umbilical-cord blood from two partially matched unrelated donors. N Engl J Med 2001; 344: 18701871.
  • 9
    Boiron JM, Dazey B, Cailliot C et al. Large-scale expansion and transplantation of CD34+ hematopoietic cells: In vitro and in vivo conformation of neutropenia abrogation related to the expansion process without impairment of the long term engraftment capacity. Transfusion 2006; 46: 19341942.
  • 10
    Norol F, Drouet M, Mathieu J et al. Ex-vivo expanded mobilized peripheral blood CD34+ cells accelerate haematological recovery in a baboon model of autologous transplantation. Br J Haematol 2000; 109: 162172.
  • 11
    Delaney C, Heimfeld S, Brashem-Stein C et al. Notch-mediated expansion of human cord blood progenitor cells capable of rapid myeloid reconstitution. Nat Med 2010; 16: 232236.
  • 12
    Bruno S, Gunetti M, Gammaitoni L et al. Fast but durable megakaryocyte repopulation and platelet production in NOD/SCID mice transplanted with ex-vivo expanded human cord blood CD34+ cells. Stem Cells 2004; 22: 135143.
  • 13
    van Hensbergen Y, Schipper LF, Brand A et al. Ex vivo culture of human CD34+ cord blood cells with thrombopoietin (TPO) accelerates platelet engraftment in a NOD/SCID mouse model. Exp Hematol 2006; 34: 943950.
  • 14
    Mattia G, Milazzo L, Vulcano F et al. Long-term platelet production assessed in NOD/SCID mice injected with cord blood CD34+ cells, thrombopoietin-amplified in clinical grade serum-free culture. Exp Hematol 2008; 36: 244252.
  • 15
    Kamel AM, El-Sharkawy N, Mahmoud HK et al. Impact of CD34 subsets on engraftment kinetics in allogeneic peripheral blood stem cell transplantation. Bone Marrow Transplant 2005; 35: 129136.
  • 16
    Meldgaard Knudsen L, Jensen L, Jarlbaek L et al. Subsets of CD34+ hematopoietic progenitors and platelet recovery after high dose chemotherapy and peripheral blood stem cell transplantation. Haematologica 1999; 84: 517524.
  • 17
    Schipper LF, Brand A, Reniers N et al. Differential maturation of megakaryocyte progenitor cells from cord blood and mobilized peripheral blood. Exp Hematol 2003; 31: 324330.
  • 18
    Schipper LF, Brand A, Reniers NC et al. Effects of thrombopoietin on the proliferation and differentiation of primitive and mature haemopoietic progenitor cells in cord blood. Br J Haematol 1998; 101: 425435.
  • 19
    Schipper LF, van Hensbergen Y, Fibbe WE et al. A sensitive quantitative single-platform flow cytometry protocol to measure human platelets in mouse peripheral blood. Transfusion 2007; 47: 23052314.
  • 20
    Ballen KK, Valinski H, Greiner D et al. Variables to predict engraftment of umbilical cord blood into immunodeficient mice: Usefulness of the non-obese diabetic-severe combined immunodeficient assay. Br J Haematol 2001; 114: 211218.
  • 21
    Migliaccio AR, Tirelli V, Masiello F et al. High levels of CD44 expression identify hematopoietic cells capable of generating great numbers of erythroid cells under HEMA conditions. Blood 2010; 116: 3349a.
  • 22
    Migliaccio AR, Whitsett C, Migliaccio G. Erythroid cells in vitro: From developmental biology to blood transfusion products. Curr Opin Hematol 2009; 16: 259268.
  • 23
    Hogan CJ, Shpall EJ, McNulty O et al. Engraftment and development of human CD34+-enriched cells from umbilical cord blood in NOD/LtSz-scid mice. Blood 1997; 90: 8596.
  • 24
    Piacibello W, Sanavio F, Severino A et al. Engraftment in nonobese diabetic severe combined immunodeficient mice of human CD34+ cord blood cells after ex vivo expansion: Evidence for the amplification and self renewal of repopulating stem cells. Blood 1999; 93: 37363749.
  • 25
    Dunois-Lardé C, Capron C, Fichelson S et al. Exposure of human megakaryocytes to high shear rates accelerates platelet production. Blood 2009; 114: 18751883.
  • 26
    Dercksen MW, Weimar IS, Richel DJ et al. The value of flow cytometric analysis of platelet glycoprotein expression on CD34+ cells measured under conditions that prevent P-selectin mediated bindings of platelets. Blood 1995; 86: 37713782.
  • 27
    Feng R, Shimazaki C, Inaba T et al. CD34+/CD41+ cells best predict platelet recovery after autologous peripheral blood stem cell transplantation. Bone Marrow Transplant 1998; 21: 12171222.