SEARCH

SEARCH BY CITATION

Cited in:

CrossRef

This article has been cited by:

  1. 1
    Tiziana Annese, Patrizia Corsi, Simona Ruggieri, Roberto Tamma, Christian Marinaccio, Sabrina Picocci, Mariella Errede, Giorgina Specchia, Annamaria De Luca, Maria Antonia Frassanito, Vanessa Desantis, Angelo Vacca, Domenico Ribatti, Beatrice Nico, Isolation and characterization of neural stem cells from dystrophic mdx mouse, Experimental Cell Research, 2016, 343, 2, 190

    CrossRef

  2. 2
    Camila F. Almeida, Stephanie A. Fernandes, Antonio F. Ribeiro Junior, Oswaldo Keith Okamoto, Mariz Vainzof, Muscle Satellite Cells: Exploring the Basic Biology to Rule Them, Stem Cells International, 2016, 2016, 1

    CrossRef

  3. 3
    Hiroyuki Awano, Anthony Blaeser, Bo Wu, Pei Lu, Elizabeth Keramaris-Vrantsis, Qi Lu, Dystroglycanopathy muscles lacking functional glycosylation of alpha-dystroglycan retain regeneration capacity, Neuromuscular Disorders, 2015, 25, 6, 474

    CrossRef

  4. 4
    Nicolas A Dumont, Yu Xin Wang, Julia von Maltzahn, Alessandra Pasut, C Florian Bentzinger, Caroline E Brun, Michael A Rudnicki, Dystrophin expression in muscle stem cells regulates their polarity and asymmetric division, Nature Medicine, 2015, 21, 12, 1455

    CrossRef

  5. 5
    Rositsa Milcheva, Dimitar Ivanov, Ivan Iliev, Russy Russev, Svetlozara Petkova, Pavel Babal, Increased sialylation as a phenomenon in accommodation of the parasitic nematode Trichinella spiralis (Owen, 1835) in skeletal muscle fibres, Folia Parasitologica, 2015, 62,

    CrossRef

  6. 6
    Jihee Kim, Mark Hopkinson, Manoli Kavishwar, Marta Fernandez-Fuente, Susan Carol Brown, Prenatal muscle development in a mouse model for the secondary dystroglycanopathies, Skeletal Muscle, 2015, 6, 1

    CrossRef

  7. 7
    Luisa Boldrin, Peter S. Zammit, Jennifer E. Morgan, Satellite cells from dystrophic muscle retain regenerative capacity, Stem Cell Research, 2015, 14, 1, 20

    CrossRef

  8. 8
    Maura H. Parker, The altered fate of aging satellite cells is determined by signaling and epigenetic changes, Frontiers in Genetics, 2015, 6,

    CrossRef

  9. 9
    Jinhong Meng, Maximilien Bencze, Rowan Asfahani, Francesco Muntoni, Jennifer E Morgan, The effect of the muscle environment on the regenerative capacity of human skeletal muscle stem cells, Skeletal Muscle, 2015, 5, 1

    CrossRef

  10. 10
    M. Mamunur Rahman, Mallika Ghosh, Jaganathan Subramani, Guo-Hua Fong, Morgan E. Carlson, Linda H. Shapiro, CD13 Regulates Anchorage and Differentiation of the Skeletal Muscle Satellite Stem Cell Population in Ischemic Injury, STEM CELLS, 2014, 32, 6
  11. 11
    Míriam Bobadilla, Neira Sáinz, José Antonio Rodriguez, Gloria Abizanda, Josune Orbe, Alba Martino, José Manuel García Verdugo, José A. Páramo, Felipe Prósper, Ana Pérez-Ruiz, MMP-10 Is Required for Efficient Muscle Regeneration in Mouse Models of Injury and Muscular Dystrophy, STEM CELLS, 2014, 32, 2
  12. 12
    Dane K. Lund, D. D. W. Cornelison, Enter the matrix: shape, signal and superhighway, The FEBS Journal, 2013, 280, 17
  13. 13
    Magda Dubinska-Magiera, Magdalena Zaremba-Czogalla, Ryszard Rzepecki, Muscle development, regeneration and laminopathies: how lamins or lamina-associated proteins can contribute to muscle development, regeneration and disease, Cellular and Molecular Life Sciences, 2013, 70, 15, 2713

    CrossRef