SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Cobaleda C, Sanchez-Garcia I. B-cell acute lymphoblastic leukaemia: Towards understanding its cellular origin. Bioessays 2009; 31: 600609.
  • 2
    Sarry JE, Murphy K, Perry R et al. Human acute myelogenous leukemia stem cells are rare and heterogeneous when assayed in NOD/SCID/IL2Rγc-deficient mice. J Clin Invest 2011; 121: 384395.
  • 3
    Goardon N, Marchi E, Atzberger A et al. Coexistence of LMPP-like and GMP-like leukemia stem cells in acute myeloid leukemia. Cancer Cell 2011; 19: 138152.
  • 4
    Cozzio A, Passegu E, Ayton PM et al. Similar MLL-associated leukemias arising from self-renewing stem cells and short-lived myeloid progenitors. Genes Dev 2003; 17: 30293035.
  • 5
    Huntly BJP, Shigematsu H, Deguchi K et al. MOZ-TIF2, but not BCR-ABL, confers properties of leukemic stem cells to committed murine hematopoietic progenitors. Cancer Cell 2004; 6: 587596.
  • 6
    Krivtsov AV, Twomey D, Feng Z et al. Transformation from committed progenitor to leukaemia stem cell initiated by MLL-F9. Nature 2006; 442: 818822.
  • 7
    Greaves MF, Maia AT, Wiemels JL et al. Leukemia in twins: lessons in natural history. Blood 2003; 102: 23212333.
  • 8
    Ford AM, Bennett CA, Price CM et al. Fetal origins of the TEL-AML1 fusion gene in identical twins with leukemia. Proc Natl Acad Sci USA 1998; 95: 45844588.
  • 9
    Hong D, Gupta R, Ancliff P et al. Initiating and cancer-propagating cells in TEL-AML1-associated childhood leukemia. Science 2008; 319: 336339.
  • 10
    Pine SR, Wiemels JL, Jayabose S et al. TEL-AML1 fusion precedes differentiation to pre-B cells in childhood acute lymphoblastic leukemia. Leuk Res 2003; 27: 155164.
  • 11
    Weston VJ, McConville CM, Mann JR et al. Molecular analysis of single colonies reveals a diverse origin of initial clonal proliferation in B-precursor acute lymphoblastic leukemia that can precede the t(12;21) translocation. Cancer Res 2001; 61: 85478553.
  • 12
    Schindler JW, Van Buren D, Foudi A et al. TEL-AML1 corrupts hematopoietic stem cells to persist in the bone marrow and initiate leukemia. Cell Stem Cell 2009; 5: 4353.
  • 13
    Tsuzuki S, Seto M, Greaves M et al. Modeling first-hit functions of the t (12; 21) TEL-AML1 translocation in mice. Proc Natl Acad Sci USA 2004; 101: 84438448.
  • 14
    Fischer M, Schwieger M, Horn S et al. Defining the oncogenic function of the TEL/AML1 (ETV6/RUNX1) fusion protein in a mouse model. Oncogene 2005; 24: 75797591.
  • 15
    Sabaawy HE, Azuma M, Embree LJ et al. TEL-AML1 transgenic zebrafish model of precursor B cell acute lymphoblastic leukemia. Proc Natl Acad Sci USA 2006; 103: 1516615171.
  • 16
    Morrow M, Horton S, Kioussis D et al. TEL-AML1 promotes development of specific hematopoietic lineages consistent with preleukemic activity. Blood 2004; 103: 38903896.
  • 17
    Mori H, Colman SM, Xiao Z et al. Chromosome translocations and covert leukemic clones are generated during normal fetal development. Proc Natl Acad Sci USA 2002; 99: 82428247.
  • 18
    Bernardin F, Yang Y, Cleaves R et al. TEL-AML1, expressed from t(12;21) in human acute lymphocytic leukemia, induces acute leukemia in mice. Cancer Res 2002; 62: 39043908.
  • 19
    van der Weyden L, Giotopoulos G, Rust AG et al. Modeling the evolution of ETV6-RUNX1-induced B-cell precursor acute lymphoblastic leukemia in mice. Blood 2011; 118: 10411051.
  • 20
    Tsuzuki S, Karnan S, Horibe K et al. Genetic abnormalities involved in t (12; 21) TEL-AML1 acute lymphoblastic leukemia: Analysis by means of array-based comparative genomic hybridization. Cancer Sci 2007; 98: 698706.
  • 21
    Tsuzuki S, Seto M. Expansion of functionally defined mouse hematopoietic stem/progenitor cells by a short isoform of RUNX1/AML1. Blood 2012; 119: 727735.
  • 22
    Magnusson M, Brun ACM, Miyake N et al. HOXA10 is a critical regulator for hematopoietic stem cells and erythroid/megakaryocyte development. Blood 2007; 109: 36873696.
  • 23
    DeKoter RP, Singh H. Regulation of B lymphocyte and macrophage development by graded expression of PU. 1. Science 2000; 288: 14391441.
  • 24
    Kulessa H, Frampton J, Graf T. GATA-1 reprograms avian myelomonocytic cell lines into eosinophils, thromboblasts, and erythroblasts. Genes Dev 1995; 9: 12501262.
  • 25
    Parikh C, Subrahmanyam R, Ren R. Oncogenic NRAS rapidly and efficiently induces CMML-and AML-like diseases in mice. Blood 2006; 108: 23492357.
  • 26
    Zuber J, Radtke I, Pardee TS et al. Mouse models of human AML accurately predict chemotherapy response. Genes Dev 2009; 23: 877889.
  • 27
    Pallisgaard N, Clausen N, Schroder H et al. Rapid and sensitive minimal residual disease detection in acute leukemia by quantitative real-time RT-PCR exemplified by t (12; 21) TEL-AML1 fusion transcript. Gene Chromosome Canc 1999; 26: 355365.
  • 28
    Vieira P, Cumano A. Differentiation of B lymphocytes from hematopoietic stem cells. Methods Mol Biol 2004; 271: 6776.
  • 29
    Case M, Matheson E, Minto L et al. Mutation of genes affecting the RAS pathway is common in childhood acute lymphoblastic leukemia. Cancer Res 2008; 68: 68036809.
  • 30
    Tsuzuki S, Taguchi O, Seto M. Promotion and maintenance of leukemia by ERG. Blood 2011; 117: 38583868.
  • 31
    Wong DJ, Liu H, Ridky TW et al. Module map of stem cell genes guides creation of epithelial cancer stem cells. Cell Stem Cell 2008; 2: 333344.
  • 32
    Assou S, Le Carrour T, Tondeur S et al. A meta-analysis of human embryonic stem cells transcriptome integrated into a web-based expression atlas. Stem Cells 2007; 25: 961973.
  • 33
    Ben-Porath I, Thomson MW, Carey VJ et al. An embryonic stem cell-like gene expression signature in poorly differentiated aggressive human tumors. Nat Genet 2008; 40: 499507.
  • 34
    Somervaille TCP, Matheny CJ, Spencer GJ et al. Hierarchical maintenance of MLL myeloid leukemia stem cells employs a transcriptional program shared with embryonic rather than adult stem cells. Cell Stem Cell 2009; 4: 129140.
  • 35
    Speck NA, Gilliland DG. Core-binding factors in haematopoiesis and leukaemia. Nat Rev Cancer 2002; 2: 502513.
  • 36
    Panzer-Grumayer ER, Cazzaniga G, van der Velden VHJ et al. Immunogenotype changes prevail in relapses of young children with TEL-AML1-positive acute lymphoblastic leukemia and derive mainly from clonal selection. Clinic Cancer Res 2005; 11: 77207727.
  • 37
    Eguchi-Ishimae M, Eguchi M, Ishii E et al. Breakage and fusion of the TEL (ETV6) gene in immature B lymphocytes induced by apoptogenic signals. Blood 2001; 97: 737743.
  • 38
    Olsen M, Madsen HO, Hjalgrim H et al. Preleukemic TEL-AML1-positive clones at cell level of 10(−3) to 10(−4) do not persist into adulthood. J Pediatr Hematol Oncol 2006; 28: 734740.
  • 39
    Aguiar RCT, Sohal J, Van Rhee F et al. TEL-AML1 fusion in acute lymphoblastic leukaemia of adults. Br J Hematol 1996; 95: 673677.
    Direct Link:
  • 40
    Jabbar Al-Obaidi MS, Martineau M, Bennett CF et al. ETV6/AML1 fusion by FISH in adult acute lymphoblastic leukemia. Leukemia 2002; 16: 669674.
  • 41
    Wong DJ, Segal E, Chang HY. Stemness, cancer and cancer stem cells. Cell Cycle 2008; 7: 36223624.
  • 42
    Mullighan CG, Su X, Zhang J et al. Deletion of IKZF1 and prognosis in acute lymphoblastic leukemia. N Engl J Med 2009; 360: 470480.
  • 43
    Sala A. B-MYB, a transcription factor implicated in regulating cell cycle, apoptosis and cancer. Eur J Cancer 2005; 41: 24792484.
  • 44
    Brault L, Gasser C, Bracher F et al. PIM serine/threonine kinases in the pathogenesis and therapy of hematologic malignancies and solid cancers. Haematologica 2010; 95: 10041015.
  • 45
    Wotton D, Massague J. Smad transcriptional corepressors in TGF beta family signaling. Curr Topics Microbiol Immunol 2001; 254: 145164.
  • 46
    Nemeth MJ, Curtis DJ, Kirby MR et al. Hmgb3: An HMG-box family member expressed in primitive hematopoietic cells that inhibits myeloid and B-cell differentiation. Blood 2003; 102: 12981306.
  • 47
    Nemeth MJ, Kirby MR, Bodine DM. Hmgb3 regulates the balance between hematopoietic stem cell self-renewal and differentiation. Proc Natl Acad Sci USA 2006; 103: 1378313788.
  • 48
    Mikkers H, Nawijn M, Allen J et al. Mice deficient for all PIM kinases display reduced body size and impaired responses to hematopoietic growth factors. Mol Cell Biol 2004; 24: 61046115.
  • 49
    Powers SE, Taniguchi K, Yen W et al. Tgif1 and Tgif2 regulate Nodal signaling and are required for gastrulation. Development 2010; 137: 249259.
  • 50
    Ford AM, Fasching K, Panzer-Grumayer ER et al. Origins of “late” relapse in childhood acute lymphoblastic leukemia with TEL-AML1 fusion genes. Blood 2001; 98: 558564.
  • 51
    Konrad M, Metzler M, Panzer S et al. Late relapses evolve from slow-responding subclones in t (12; 21)-positive acute lymphoblastic leukemia: Evidence for the persistence of a preleukemic clone. Blood 2003; 101: 36353640.
  • 52
    Zuna J, Ford AM, Peham M et al. TEL deletion analysis supports a novel view of relapse in childhood acute lymphoblastic leukemia. Clin Cancer Res 2004; 10: 53555360.
  • 53
    Anderson K, Lutz C, van Delft FW et al. Genetic variegation of clonal architecture and propagating cells in leukaemia. Nature 2010; 469: 356361.
  • 54
    Kuster L, Grausenburger R, Fuka G et al. ETV6/RUNX1-positive relapses evolve from an ancestral clone and frequently acquire deletions of genes implicated in glucocorticoid signaling. Blood 2011; 117: 26582667.
  • 55
    van Delft FW, Horsley S, Colman S et al. Clonal origins of relapse in ETV6-RUNX1 acute lymphoblastic leukemia. Blood 2011; 117: 62476254.