• 1
    Kuroda T, Tada M, Kubota H et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 2005; 25: 24752485.
  • 2
    Nakatake Y, Fukui N, Iwamatsu Y et al. Klf4 cooperates with Oct3/4 and Sox2 to activate the Lefty1 core promoter in embryonic stem cells. Mol Cell Biol 2006; 26: 77727782.
  • 3
    Tokuzawa Y, Kaiho E, Maruyama M et al. Fbx15 is a novel target of Oct3/4 but is dispensable for embryonic stem cell self-renewal and mouse development. Mol Cell Biol 2003; 23: 26992708.
  • 4
    Ho R, Chronis C, Plath K. Mechanistic insights into reprogramming to induced pluripotency. J Cell Physiol 2011; 226: 868878.
  • 5
    Chen Y, Shi L, Zhang L et al. The molecular mechanism governing the oncogenic potential of SOX2 in breast cancer. J Biol Chem 2008; 283: 1796917978.
  • 6
    Huang P, Qiu J, Li B et al. Role of Sox2 and Oct4 in predicting survival of hepatocellular carcinoma patients after hepatectomy. Clin Biochem 2011; 44: 582589.
  • 7
    Chew JL, Loh YH, Zhang W et al. Reciprocal transcriptional regulation of Pou5f1 and Sox2 via the Oct4/Sox2 complex in embryonic stem cells. Mol Cell Biol 2005; 25: 60316046.
  • 8
    Rodda DJ, Chew JL, Lim LH et al. Transcriptional regulation of nanog by OCT4 and SOX2. J Biol Chem 2005; 280: 2473124737.
  • 9
    Beachy PA, Karhadkar SS, Berman DM. Tissue repair and stem cell renewal in carcinogenesis. Nature 2004; 432: 324331.
  • 10
    Bjerkvig R, Tysnes BB, Aboody KS et al. Opinion: The origin of the cancer stem cell: Current controversies and new insights. Nat Rev Cancer 2005; 5: 899904.
  • 11
    Brabletz T, Jung A, Spaderna S et al. Opinion: Migrating cancer stem cells—An integrated concept of malignant tumour progression. Nat Rev Cancer 2005; 5: 744749.
  • 12
    Bonnet D, Dick JE. Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med 1997; 3: 730737.
  • 13
    Al-Hajj M, Wicha MS, Benito-Hernandez A et al. Prospective identification of tumorigenic breast cancer cells. Proc Natl Acad Sci USA 2003; 100: 39833988.
  • 14
    Kim CF, Jackson EL, Woolfenden AE et al. Identification of bronchioalveolar stem cells in normal lung and lung cancer. Cell 2005; 121: 823835.
  • 15
    Singh SK, Clarke ID, Terasaki M et al. Identification of a cancer stem cell in human brain tumors. Cancer Res 2003; 63: 58215828.
  • 16
    Xin L, Lawson DA, Witte ON. The Sca-1 cell surface marker enriches for a prostate-regenerating cell subpopulation that can initiate prostate tumorigenesis. Proc Natl Acad Sci USA 2005; 102: 69426947.
  • 17
    Goodell MA, Brose K, Paradis G et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 17971806.
  • 18
    Zhou S, Schuetz JD, Bunting KD et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 10281034.
  • 19
    Spangrude GJ, Johnson GR. Resting and activated subsets of mouse multipotent hematopoietic stem cells. Proc Natl Acad Sci USA 1990; 87: 74337437.
  • 20
    Challen GA, Little MH. A side order of stem cells: The SP phenotype. Stem Cells 2006; 24: 312.
  • 21
    Montanaro F, Liadaki K, Volinski J. Skeletal muscle engraftment potential of adult mouse skin side population cells. Proc Natl Acad Sci USA 2003; 100: 93369341.
  • 22
    Welm B, Behbod F, Goodell MA et al. Isolation and characterization of functional mammary gland stem cells. Cell Prolif 2003; 36 Suppl 1: 1732.
  • 23
    Wulf GG, Luo KL, Jackson KA et al. Cells of the hepatic side population contribute to liver regeneration and can be replenished with bone marrow stem cells. Haematologica 2003; 88: 368378.
  • 24
    Kruger JA, Kaplan CD, Luo Y et al. Characterization of stem cell-like cancer cells in immune-competent mice. Blood 2006; 108: 39063912.
  • 25
    Borovski T, De Sousa EMF, Vermeulen L et al. Cancer stem cell niche: The place to be. Cancer Res 2011; 71: 634639.
  • 26
    Calabrese C, Poppleton H, Kocak M et al. A perivascular niche for brain tumor stem cells. Cancer Cell 2007; 11: 6982.
  • 27
    Lewis CE, Pollard JW. Distinct role of macrophages in different tumor microenvironments. Cancer Res 2006; 66: 605612.
  • 28
    Gyorki DE, Asselin-Labat ML, van Rooijen N et al. Resident macrophages influence stem cell activity in the mammary gland. Breast Cancer Res 2009; 11: R62.
  • 29
    Ohno S, Inagawa H, Dhar DK et al. Role of tumor-associated macrophages (TAM) in advanced gastric carcinoma: The impact on FasL-mediated counterattack. Anticancer Res 2005; 25: 463470.
  • 30
    Qian BZ, Pollard JW. Macrophage diversity enhances tumor progression and metastasis. Cell 2010; 2: 141: 3951.
  • 31
    Van Rooijen N. The liposome-mediated macrophage ‘suicide’ technique. J Immunol Methods 1989; 124: 16.
  • 32
    Raschke WC, Baird S, Ralph P et al. Functional macrophage cell lines transformed by Abelson leukemia virus. Cell 1978; 15: 261267.
  • 33
    Chambers I, Colby D, Robertson M et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643655.
  • 34
    Dezso Z, Oltvai ZN, Barabasi AL. Bioinformatics analysis of experimentally determined protein complexes in the yeast Saccharomyces cerevisiae. Genome Res 2003; 13: 24502454.
  • 35
    Mitsui K, Tokuzawa Y, Itoh H et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631642.
  • 36
    Boyer LA, Lee TI, Cole MF et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947956.
  • 37
    Pollard JW. Macrophages define the invasive microenvironment in breast cancer. J Leukoc Biol 2008; 84: 623630.
  • 38
    Pines G, Kostler WJ, Yarden Y. Oncogenic mutant forms of EGFR: Lessons in signal transduction and targets for cancer therapy. FEBS Lett 2010; 584: 26992706.
  • 39
    Biswas SK, Mantovani A. Macrophage plasticity and interaction with lymphocyte subsets: Cancer as a paradigm. Nat Immunol 2010; 11: 889896.
  • 40
    Quesnelle KM, Boehm AL, Grandis JR. STAT-mediated EGFR signaling in cancer. J Cell Biochem 2007; 102: 311319.
  • 41
    Foshay KM, Gallicano GI. Regulation of Sox2 by STAT3 initiates commitment to the neural precursor cell fate. Stem Cells Dev 2008; 17: 269278.
  • 42
    Creighton CJ, Chang JC, Rosen JM. Epithelial-mesenchymal transition (EMT) in tumor-initiating cells and its clinical implications in breast cancer. J Mammary Gland Biol Neoplasia 2010; 15: 253260.
  • 43
    Wicha MS, Liu S, Dontu G. Cancer stem cells: An old idea—A paradigm shift. Cancer Res 2006; 66: 18831890; discussion 1895–1886.
  • 44
    Rizzino A. Sox2 and Oct-3/4: A versatile pair of master regulators that orchestrate the self-renewal and pluripotency of embryonic stem cells. Wiley Interdiscip Rev Syst Biol Med 2009; 1: 228236.
  • 45
    Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol 2010; 46: 308316.
  • 46
    Parmar K, Mauch P, Vergilio JA et al. Distribution of hematopoietic stem cells in the bone marrow according to regional hypoxia. Proc Natl Acad Sci USA 2007; 104: 54315436.
  • 47
    Balkwill F, Charles KA, Mantovani A. Smoldering and polarized inflammation in the initiation and promotion of malignant disease. Cancer Cell 2005; 7: 211217.
  • 48
    Hansen D, Schedl T. The regulatory network controlling the proliferation-meiotic entry decision in the Caenorhabditis elegans germ line. Curr Top Dev Biol 2006; 76: 185215.
  • 49
    Hubbard EJ. Caenorhabditis elegans germ line: A model for stem cell biology. Dev Dyn 2007; 236: 33433357.
  • 50
    Zandi R, Larsen AB, Andersen P et al. Mechanisms for oncogenic activation of the epidermal growth factor receptor. Cell Signal 2007; 19: 20132023.
  • 51
    Yu H, Kortylewski M, Pardoll D. Crosstalk between cancer and immune cells: Role of STAT3 in the tumour microenvironment. Nat Rev Immunol 2007; 7: 4151.
  • 52
    Liby K, Voong N, Williams CR et al. The synthetic triterpenoid CDDO-imidazolide suppresses STAT phosphorylation and induces apoptosis in myeloma and lung cancer. Clin Cancer Res. 2006 15;12(14 Pt 1): 42884293.