SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Lamba DA, Karl MO, Reh TA. Strategies for retinal repair: Cell replacement and regeneration. Prog Brain Res 2009; 175: 2331.
  • 2
    Tropepe V, Coles BL, Chiasson BJ et al. Retinal stem cells in the adult mammalian eye. Science 2000; 287: 20322036.
  • 3
    Kubota R, Hokoc JN, Moshiri A et al. A comparative study of neurogenesis in the retinal ciliary marginal zone of homeothermic vertebrates. Brain Res Dev Brain Res 2002; 134: 3141.
  • 4
    Araki M. Regeneration of the amphibian retina: Role of tissue interaction and related signaling molecules on RPE transdifferentiation. Dev Growth Differ 2007; 49: 109120.
  • 5
    Reh TA, Nagy T, Gretton H. Retinal pigmented epithelial cells induced to transdifferentiate to neurons by laminin. Nature 1987; 330: 6871.
  • 6
    MacNeil A, Pearson RA, MacLaren RE et al. Comparative analysis of progenitor cells isolated from the iris, pars plana, and ciliary body of the adult porcine eye. Stem Cells 2007; 25: 24302438.
  • 7
    Coles BL, Angenieux B, Inoue T et al. Facile isolation and the characterization of human retinal stem cells. Proc Natl Acad Sci USA 2004; 101: 1577215777.
  • 8
    Xu H, Sta Iglesia DD, Kielczewski JL et al. Characteristics of progenitor cells derived from adult ciliary body in mouse, rat, and human eyes. Invest Ophthalmol Vis Sci 2007; 48: 16741682.
  • 9
    Nishiguchi KM, Kaneko H, Nakamura M et al. Identification of photoreceptor precursors in the pars plana during ocular development and after retinal injury. Invest Ophthalmol Vis Sci 2008; 49: 422428.
  • 10
    Cicero SA, Johnson D, Reyntjens S et al. Cells previously identified as retinal stem cells are pigmented ciliary epithelial cells. Proc Natl Acad Sci USA 2009; 106: 66856690.
  • 11
    Gualdoni S, Baron M, Lakowski J et al. Adult ciliary epithelial cells, previously identified as retinal stem cells with potential for retinal repair, fail to differentiate into new rod photoreceptors. Stem Cells 2010; 28: 10481059.
  • 12
    Zhao X, Das AV, Soto-Leon F et al. Growth factor-responsive progenitors in the postnatal mammalian retina. Dev Dyn 2005; 232: 349358.
  • 13
    Abdouh M, Bernier G. In vivo reactivation of a quiescent cell population located in the ocular ciliary body of adult mammals. Exp Eye Res 2006; 83: 153164.
  • 14
    Kubo F, Nakagawa S. Hairy1 acts as a node downstream of Wnt signaling to maintain retinal stem cell-like progenitor cells in the chick ciliary marginal zone. Development 2009; 136: 18231833.
  • 15
    Inoue T, Kagawa T, Fukushima M et al. Activation of canonical Wnt pathway promotes proliferation of retinal stem cells derived from adult mouse ciliary margin. Stem Cells 2006; 24: 95104.
  • 16
    De Marzo A, Aruta C, Marigo V. PEDF promotes retinal neurosphere formation and expansion in vitro. Adv Exp Med Biol 2010; 664: 621630.
  • 17
    Inoue T, Coles BL, Dorval K et al. Maximizing functional photoreceptor differentiation from adult human retinal stem cells. Stem Cells 2010; 28: 489500.
  • 18
    Jiao JW, Feldheim DA, Chen DF. Ephrins as negative regulators of adult neurogenesis in diverse regions of the central nervous system. Proc Natl Acad Sci USA 2008; 105: 87788783.
  • 19
    Martinez A, Soriano E. Functions of ephrin/Eph interactions in the development of the nervous system: Emphasis on the hippocampal system. Brain Res Brain Res Rev 2005; 49: 211226.
  • 20
    Depaepe V, Suarez-Gonzalez N, Dufour A et al. Ephrin signalling controls brain size by regulating apoptosis of neural progenitors. Nature 2005; 435: 12441250.
  • 21
    Holmberg J, Armulik A, Senti KA et al. Ephrin-A2 reverse signaling negatively regulates neural progenitor proliferation and neurogenesis. Genes Dev 2005; 19: 462471.
  • 22
    Jiao J, Chen DF. Induction of neurogenesis in nonconventional neurogenic regions of the adult central nervous system by niche astrocyte-produced signals. Stem Cells 2008; 26: 12211230.
  • 23
    Moe MC, Kolberg RS, Sandberg C et al. A comparison of epithelial and neural properties in progenitor cells derived from the adult human ciliary body and brain. Exp Eye Res 2009; 88: 3038.
  • 24
    Oh EC, Khan N, Novelli E et al. Transformation of cone precursors to functional rod photoreceptors by bZIP transcription factor NRL. Proc Natl Acad Sci USA 2007; 104: 16791684.
  • 25
    Fried SI, Lasker AC, Desai NJ et al. Axonal sodium-channel bands shape the response to electric stimulation in retinal ganglion cells. J Neurophysiol 2009; 101: 19721987.
  • 26
    Tehovnik EJ, Tolias AS, Sultan F et al. Direct and indirect activation of cortical neurons by electrical microstimulation. J Neurophysiol 2006; 96: 512521.
  • 27
    Soto F, Ma X, Cecil JL et al. Spontaneous activity promotes synapse formation in a cell-type-dependent manner in the developing retina. J Neurosci 2012; 32: 54265439.
  • 28
    Blankenship AG, Feller MB. Mechanisms underlying spontaneous patterned activity in developing neural circuits. Nat Rev Neurosci 2010; 11: 1829.
  • 29
    Osakada F, Ikeda H, Sasai Y et al. Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 2009; 4: 811824.
  • 30
    Lie DC, Colamarino SA, Song HJ et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature 2005; 437: 13701375.
  • 31
    Kunke D, Bryja V, Mygland L et al. Inhibition of canonical Wnt signaling promotes gliogenesis in P0-NSCs. Biochem Biophys Res Commun 2009; 386: 628633.
  • 32
    Wexler EM, Paucer A, Kornblum HI et al. Endogenous Wnt signaling maintains neural progenitor cell potency. Stem Cells 2009; 27: 11301141.
  • 33
    Clarke AR. Wnt signalling in the mouse intestine. Oncogene 2006; 25: 75127521.
  • 34
    Wei S, Xu G, Bridges LC et al. ADAM13 induces cranial neural crest by cleaving class B Ephrins and regulating Wnt signaling. Dev Cell 2010; 19: 345352.
  • 35
    Batlle E, Henderson JT, Beghtel H et al. Beta-catenin and TCF mediate cell positioning in the intestinal epithelium by controlling the expression of EphB/ephrinB. Cell 2002; 111: 251263.
  • 36
    Lim BK, Cho SJ, Sumbre G et al. Region-specific contribution of ephrin-B and Wnt signaling to receptive field plasticity in developing optic tectum. Neuron 2010; 65: 899911.
  • 37
    Greferath U, Canty AJ, Messenger J et al. Developmental expression of EphA4-tyrosine kinase receptor in the mouse brain and spinal cord. Mech Dev 2002; 119( suppl 1): S231S238.
  • 38
    Cowan CA, Henkemeyer M. Ephrins in reverse, park and drive. Trends Cell Biol 2002; 12: 339346.
  • 39
    Egea J, Klein R. Bidirectional Eph-ephrin signaling during axon guidance. Trends Cell Biol 2007; 17: 230238.
  • 40
    Klein R. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat Neurosci 2009; 12: 1520.
  • 41
    Moshiri A, Reh TA. Persistent progenitors at the retinal margin of ptc+/− mice. J Neurosci 2004; 24: 229237.
  • 42
    Marquardt T, Ashery-Padan R, Andrejewski N et al. Pax6 is required for the multipotent state of retinal progenitor cells. Cell 2001; 105: 4355.
  • 43
    Lamba D, Karl M, Reh T. Neural regeneration and cell replacement: A view from the eye. Cell Stem Cell 2008; 2: 538549.
  • 44
    Carmona MA, Murai KK, Wang L et al. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc Natl Acad Sci USA 2009; 106: 1252412529.
  • 45
    Filosa A, Paixao S, Honsek SD et al. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat Neurosci 2009; 12: 12851292.