• Adult hematopoietic stem cells;
  • Cell adhesion molecules;
  • Long-term repopulation;
  • Self-renewal;
  • Hematopoietic stem cell transplantation;
  • Hematopoiesis


Hematopoietic stem cells (HSCs) reside in a specialized bone marrow (BM) microenvironment that supports the maintenance and functional integrity of long-term (LT)-HSCs throughout postnatal life. The objective of this work is to study the role of activated leukocyte cell adhesion molecule (Alcam) in HSC differentiation and self-renewal using an Alcam-null (Alcam−/−) mouse model. We show here that Alcam is differentially regulated in adult hematopoiesis and is highly expressed in LT-HSCs where its level progressively increases with age. Young adult Alcam−/− mice had normal homeostatic hematopoiesis and normal numbers of phenotypic HSCs. However, Alcam−/− HSCs had reduced long-term replating capacity in vitro and reduced long-term engraftment potential upon transplantation. We show that Alcam−/− BM contain a markedly lower frequency of long-term repopulating cells than wild type. Further, the long-term repopulating potential and engraftment efficiency of Alcam−/− LT-HSCs was greatly compromised despite a progressive increase in phenotypic LT-HSC numbers during long-term serial transplantation. In addition, an age-associated increase in phenotypic LT-HSC cellularity was observed in Alcam−/− mice. This increase was predominately within the CD150hi fraction and was accompanied by significantly reduced leukocyte output. Consistent with an aging-like phenotype, older Alcam−/− LT-HSCs display myeloid-biased repopulation activity upon transplantation. Finally, Alcam−/− LT-HSCs display premature elevation of age-associated gene expression, including Selp, Clu, Cdc42, and Foxo3. Together, this study indicates that Alcam regulates functional integrity and self-renewal of LT-HSCs. STEM CELLS2013;31:560–571