SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Broxmeyer HE, Smith FO. Cord blood hematopoietic cell transplantation. In: Applelbaum FR, Forman SJ, Negrin RS et al. eds. Thomas' Hematopoietic Cell Transplantation. 4th ed. West Sussex, UK: Wiley-Blackwell, 2009: 559576.
  • 2
    Shaheen M, Broxmeyer, HE. The humoral regulation of hematopoiesis. In: Hoffman R, Benz EJ Jr, Shattil SJ et al, eds. Hematology: Basic Principles and Practice. Philadelphia, PA: Elsevier Churchill Livingston, 2009: 253275.
  • 3
    von Lindern M, Fornerod M, van Baal S et al. The translocation (6;9), associated with a specific subtype of acute myeloid leukemia, results in the fusion of two genes, dek and can, and the expression of a chimeric, leukemia-specific dek-can mRNA. Mol Cell Biol 1992; 12: 16871697.
  • 4
    Broxmeyer HE, Kappes F, Mor-Vaknin N et al. DEK regulates hematopoietic stem engraftment and progenitor cell proliferation. Stem Cells Dev 2012; 21: 14491454.
  • 5
    Koleva RI, Ficarro SB, Radomska HS et al. C/EBPα and DEK coordinately regulate myeloid differentiation. Blood 2012; 119: 48784888.
  • 6
    Broxmeyer HE, Hoggatt J, O'Leary HA et al. Dipeptidylpeptidase 4 negatively regulates colony-stimulating factor activity and stress hematopoiesis. Nat Med 2012; 18: 17861796.
  • 7
    Christopherson KW 2nd, Hangoc G, Broxmeyer HE. Cell surface peptidase CD26/dipeptidylpeptidase IV regulates CXCL12/stromal cell-derived factor-1 alpha-mediated chemotaxis of human cord blood CD34+ progenitor cells. J Immunol 2002; 169: 70007008.
  • 8
    O'Leary H, Ou X, Broxmeyer HE. The role of dipeptidylpeptidase 4 in hematopoiesis and transplantation. Curr Opin Hematopoiesis 2013; 20:314–319.
  • 9
    Ou X, O'Leary H, Broxmeyer HE. Implications of DPP4 modifications of proteins that regulate stem/Progenitors and more mature cell types. Blood. 2013 (in press).
  • 10
    Kappes F, Waldmann T, Mathew V et al. The DEK oncoprotein is a Su(var) that is essential to heterochromatin integrity. Genes Dev 2011; 25: 673678.
  • 11
    Saha AK, Kappes F, Mundade A. Intercellular trafficking of the nuclear oncoprotein DEK. Proc Natl Acad Sci USA. 2013 (in press).
  • 12
    Kappes F, Damoc C, Knippers R et al. Phosphorylation by protein kinase CK2 changes the DNA binding properties of the human chromatin protein DEK. Mol Cell Biol 2004; 24: 60116020.
  • 13
    Faulkner NE, Hilfinger JM, Markovitz DM. Protein phosphatase 2A activates the HIV-2 promoter through enhancer elements that include the pets site. J Biol Chem 2001; 276: 2580425812.
  • 14
    Cleary J, Sitwala KV, Khodadoust MS et al. p300/CBP-associated factor drives DEK into interchromatin granule clusters. J Biol Chem 2005; 280: 3176031767.
  • 15
    Mor-Vaknin N, Kappes F, Dick AE et al. DEK in the synovium of patients with juvenile idiopathic arthritis. Arthritis Rheumat 2011; 63: 556567.
  • 16
    Kappes F, Fahrer J, Khodadoust MS et al. DEK is a poly(ADP-Ribose) acceptor in apoptosis and mediates resistance to genotoxic stress. Mol Cell Biol 2008; 28: 32453257.
  • 17
    Fahrer J, Popp O, Malanga M et al. High affinity interaction of poly (ADP-ribose) and the human DEK oncoprotein depends upon chain length. Biochemistry 2010; 49: 71197130.
  • 18
    Sitwala KV, Adams K, Markovitz DM. YY1 and NF-Y binding sites regulate the transcriptional activity of the dek and dek-can promoter. Oncogene 2002; 21: 88628870.
  • 19
    Carro MS, Spiga FM, Quarto M et al. DEK expression is controlled by E2F and degraded in diverse tumor types. Cell Cycle 2006; 5: 12021207.
  • 20
    Privette Vinnedge LM, Ho S-K et al. The DEK oncogene is a target of steroid hormone receptor signaling in breast cancer. Plos One 2012; 7: e46985.
  • 21
    Babaei-Jadidi R, Li N, Saadeddin A. FBXW7 influences murine intestinal homeostasis and cancer, targeting, Notch, Jun, and Dek for degradation. J Exp Med 2011; 208: 295312.
  • 22
    Cheung TH, Quach NL, Charville GW et al. Maintenance of muscle stem-cell quiescence by microRNA-489. Nature 2012; 482: 524530.
  • 23
    Sammons M, Wan SS, Vogel NL et al. Negative regulation of the RelA/p65 transactivation function by the product of the DEK proto-oncogene. J Biol Chem 2006; 281: 2680226812.
  • 24
    Gamble MJ, Fisher RP. SET and PARP1 remove DEK from chromatin to permit access by the transcription machinery. Nat Struct Mol Biol 2007; 14: 548555.
  • 25
    Kappes F, Scholten I, Richter N et al. Functional domains of the ubiuitous chromatin protein DEK. Mol Cell Biol 2004; 24: 60006010.
  • 26
    Sawatsubashi S, Murata T, Lim J et al. A histone chaperone, DEK, transcriptionally coactivates a nuclear receptor. Genes Dev 2010; 24: 159170.
  • 27
    Shaheen M, Broxmeyer HE. Principles of cytokine signaling. In: Hoffman R, Benz EJ Jr, Silberstein LE et al., eds. Hematology: Basic Principles and Practice. 6th ed, chapter 14. Philadelphia, PA: Elsevier Churchill Livingston, 2012: 136146.
  • 28
    Privette Vinnedge LM, McClaine R, Wagh PK et al. The human DEK oncogene stimulates β-catenin signaling, invasion and mammosphere formation in breast cancer. Oncogene 2011; 30: 27412752.
  • 29
    Wise-Draper TM, Allen HV, Jones EE et al. Apoptosis inhibition by the human DEK oncoprotein involves interference with p53 functions. Mol Cell Biol 2006; 26: 75067519.
  • 30
    Wise-Draper TM, Allen HV, Thobe MN et al. The human DEK proto-oncogene is a senescence inhibitor and an upregulated target of high-risk human papillomavirus E7. J Virol 2005; 79: 1430914317.
  • 31
    Wise-Draper TM, Mintz-Cole RA, Morris TA et al. Overexpression of the cellular DEK protein promotes epithelial transformation in vitro and in vivo. Cancer Res 2009; 69: 17921799.
  • 32
    Wise-Draper TM, Morreale RJ, Morris TA et al. DEK proto-oncogene expression interferes with the normal epithelial differentiation program. Amer J Pathol 2009; 174: 7181.
  • 33
    Khodadoust MS, Verhaegen M, Kappes F et al. Melanoma proliferation and chemoresistance controlled by the DEK oncogene. Cancer Res 2009; 69: 64056413.
  • 34
    Riveiro-Falkenbach E, Soengas MS. Control of tumorigenesis and chemoresistance by the DEK oncogene. Clin Cancer Res 2010; 16: 29322938.
  • 35
    Kappes F, Khodadoust MS, Yu L et al. DEK expression in melanocytic lesions. Hum Pathol 2011; 42: 932938.
  • 36
    Patel RM, Walters LL, Kappes F et al. DEK expression in merkel cell carcinoma and small cell carcinoma. J Cutan Pathol 2012; 39: 753757.
  • 37
    Liu S, Wang X, Sun F et al. DEK overexpression is correlated with the clinical features of breast cancer. Pathol Int 2012; 62: 176181.
  • 38
    Liu K, Feng T, Liu J, et.al. Silencing of the DEK gene induces apoptosis and senescence in CaSki cervical carcinoma cells via the up-regultaion of NF-κB p65. Biosci Res 2012; 32: 323332.
  • 39
    Kavanaugh GM, Wise-Draper TM, Morreale RJ et al. The human DEK oncogene regulates DNA damage response signaling and repair. Nucleic Acid Res 2011; 39: 74657476.
  • 40
    Kim DW, Chae JI, Kim JY et al. Proteomic analysis of apoptosis related proteins regulated by proto-oncogene protein DEK. J Cell Biochem 2009; 106: 10481059.
  • 41
    Aravind L, Koonin EV. SAP-a putative DNA-binding motif involved in chromosomal organization. Trends Biochem Sci 2000; 25: 112114.
  • 42
    Böhm F, Kappes F, Scholten I et al. The SAP-box domain of chromatin protein DEK. Nucleic Acids Res 2005; 33: 11011110.
  • 43
    Devany M, Kappes F, Chen KM et al. Solution NMR structure of the N-terminal domain of the human DEK protein. Protein Sci 2008; 17: 205215.
  • 44
    Fu GK, Grosveld G, Markovitz DM. DEK, an autoantigen involved in a chromosomal translocation in acute myelogenous leukemia, binds to the HIV-2 enhancer. Proc Natl Acad Sci U S A 1997; 94: 18111815.
  • 45
    Waldmann T, Baack M, Richter N et al. Structure-specific binding of the proto-oncogene protein DEK to DNA. Nucleic Acids Res 2003; 31: 70037010.
  • 46
    Waldmann T, Eckerich C, Baack M et al. The ubiquitous chromatin protein DEK alters the structure of DNA by introducing positive supercoils. J Biol Chem 2002; 277: 2498824994.
  • 47
    Le Hir H, Gatfield D, Izaurralde E et al. The exon-exon junction complex provides a binding platform for factors involved in mRNA export and nonsense-mediated mRNA decay. EMBO J 2001; 20: 49874997.
  • 48
    Le Hir H, Izaurralde E, Maquat LE et al. The spliceosome deposits multiple proteins 20–24 nucleotides upstream of mRNA exon-exon junctions. EMBO J 2000; 19: 68606869.
  • 49
    McGarvey T, Rosonina E, McCracken S et al. The acute myeloid leukemia-associated protein, DEK, forms a splicing-dependent interaction with exon-product complexes. J Cell Biol 2000; 150: 309320.
  • 50
    Soares LM, Zanier K, Mackereth C et al. Intron removal requires proofreading of U2AF/3′ splice site recognition by DEK. Science 2006; 312: 19611965.
  • 51
    Szer IS, Sierakowska H, Szer W. A novel autoantibody to the putative oncoprotein DEK in pauciarticular onset juvenile rheumatoid arthritis. J Rheumatol 1994; 21: 21362142.
  • 52
    Murray KJ, Szer W, Grom AA et al. Antibodies to the 45 kDa DEK nuclear antigen in pauciarticular onset juvenile rheumatoid arthritis and iridocyclitis: selective association with MHC gene. J Rheumatol 1997; 24: 560567.
  • 53
    Kappes F, Burger K, Baack M et al. Subcellular localization of the human proto-oncogene protein DEK. J Biol Chem 2001; 276: 2631726323.
  • 54
    Mor-Vaknin N, Punturieri A, Sitwala K et al. The DEK nuclear autoantigen is a secreted chemotactic factor. Mol Cell Biol 2006; 26: 94849496.
  • 55
    Ageberg M, Gullberg U, Lindmark A. The involvement of cellular proliferation status in the expression of the human proto-oncogene DEK. Haematologica 2006; 91: 268269.
  • 56
    Oancea C, Rüster B, Henschler R et al. The t(6;9) associated DEK/CAN fusion protein targets a population of long-term repopulating hematopoietic stem cells for leukemogenic transformation. Leukemia 2010; 24: 19101919.
  • 57
    Christopherson KW 2nd, Hangoc G, Mantel CR et al. Modulation of hematopoietic stem cell homing and engraftment by CD26. Science 2004; 305: 10001003.
  • 58
    Gotoh A, Takahira H, Geahlen RL et al. Cross-linking of integrins induces tyrosine phosphorylation of the proto-oncogene product Vav and the protein tyrosine kinase Syk in human factor-dependent myeloid cells. Cell Growth Differ 1997; 8: 721729.
  • 59
    Gotoh A, Takahira H, Mantel C et al. Steel factor induces serine phosphorylation of Stat3 in human growth factor-dependent myeloid cell lines. Blood 1996; 88: 138145.
  • 60
    Hendrie PC, Broxmeyer HE. Myeloid cell proliferation stimulated by steel factor is pertussis toxin sensitive and enhanced by cholera toxin. Int J Immunopharmacol 1994; 16: 547560.
  • 61
    Hendrie PC, Miyazawa K, Yang YC et al. Mast cell growth factor (c-kit ligand) enhances cytokine stimulation of proliferation of the human factor-dependent cell line, M07e. Exp Hematol 1991; 19: 10311037.
  • 62
    Horie M, Broxmeyer HE. Involvement of immediate-early gene expression in the synergistic effects of steel factor in combination with granulocyte-macrophage colony-stimulating factor or interleukin-3 on proliferation of a human factor-dependent cell line. J Biol Chem 1993; 268: 968973.
  • 63
    Lee Y, Gotoh A, Kwon HJ et al. Enhancement of intracellular signaling associated with hematopoietic progenitor cell survival in response to SDF-1/CXCL12 in synergy with other cytokines. Blood 2002; 99: 43074317.
  • 64
    Mantel C, Luo Z, Hendrie P et al. Steel factor and granulocyte-macrophage colony stimulating factor act together to enhance choline-lipid turnover during synergistically stimulated proliferation of the human factor dependent cell line, M07E. Biochem Biophys Res Commun 1993; 197: 978984.
  • 65
    Miyazawa K, Hendrie PC, Kim YJ et al. Recombinant human interleukin-9 induces protein tyrosine phosphorylation and synergizes with steel factor to stimulate proliferation of the human factor-dependent cell line, M07e. Blood 1992; 80: 16851692.
  • 66
    Miyazawa K, Hendrie PC, Mantel C et al. Comparative analysis of signaling pathways between mast cell growth factor (c-kit ligand) and granulocyte-macrophage colony-stimulating factor in a human factor-dependent myeloid cell line involves phosphorylation of Raf-1, GTPase-activating Protein And mitogen-activated protein kinase. Exp Hematol 1991; 19: 11101123.
  • 67
    Miyazawa K, Toyama K, Gotoh A et al. Ligand-dependent polyubiquitination of c-kit gene product: a possible mechanism of receptor down modulation in M07e cells. Blood 1994; 83: 137145.
  • 68
    Ritchie A, Gotoh A, Gaddy J et al. Thrombopoietin upregulates the promoter conformation of p53 in a proliferation-independent manner coincident with a decreased expression of Bax: potential mechanisms for survival enhancing effects. Blood 1997; 90: 43944402.
  • 69
    Patel MJ, Liu W, Sykes MC et al. Identification of mechanosensitive genes in osteoblasts by comparative microarray studies using the rotating wall vessel and the random positioning machine. J Cell Biochem 2007; 101: 587599.
  • 70
    Johnson LA, Clasper S, Holt AP et al. An inflammation-induced mechanism for leukocyte transmigration across lymphatic vessel endothelium. J Exp Med 2006; 203: 27632777.
  • 71
    Larson BL, Ylöstalo J, Prockop DJ. Human multipotent stromal cells undergo sharp transition from division to development in culture. Stem Cells 2008; 26: 193201.
  • 72
    Shibata T, Kokubu A, Miyamato M et al. DEK oncoprotein regulates transcriptional modifiers and sustains tumor initiation activity in high-grade neuroendicrine carcinoma of the lung. Oncogene 2010; 29: 467181.
  • 73
    Sansing HA, Sarkeshik A, Yates JR et al. Integrin αβ1, αvβ, α6β effectors p130Cas, Src and Talin regulate carcinoma invasion and chemoresistance. Biochem Biophys Res Commun 2011; 406: 171176.