• 1
    Ciani L, Salinas PC. WNTs in the vertebrate nervous system: from patterning to neuronal connectivity. Nat Rev Neurosci 2005;6:351362.
  • 2
    Echevarria D, Vieira C, Gimeno L et al. Neuroepithelial secondary organizers and cell fate specification in the developing brain. Brain Res Brain Res Rev 2003;43:179191.
  • 3
    Kiecker C, Niehrs C. A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 2001;128:41894201.
  • 4
    Glinka A, Wu W, Delius H et al. Dickkopf-1 is a member of a new family of secreted proteins and functions in head induction. Nature 1998;391:357362.
  • 5
    Kazanskaya O, Glinka A, Niehrs C. The role of Xenopus dickkopf1 in prechordal plate specification and neural patterning. Development 2000;127:49814992.
  • 6
    Mukhopadhyay M, Shtrom S, Rodriguez-Esteban C et al. Dickkopf1 is required for embryonic head induction and limb morphogenesis in the mouse. Dev Cell 2001;1:423434.
  • 7
    Backman M, Machon O, Mygland L et al. Effects of canonical Wnt signaling on dorso-ventral specification of the mouse telencephalon. Dev Biol 2005;279:155168.
  • 8
    Shimamura K, Rubenstein JL. Inductive interactions direct early regionalization of the mouse forebrain. Development 1997;124:27092718.
  • 9
    Danesin C, Peres JN, Johansson M et al. Integration of telencephalic Wnt and hedgehog signaling center activities by Foxg1. Dev Cell 2009;16:576587.
  • 10
    Pera MF, Trounson AO. Human embryonic stem cells: prospects for development. Development 2004;131:55155525.
  • 11
    Danjo T, Eiraku M, Muguruma K et al. Subregional specification of embryonic stem cell-derived ventral telencephalic tissues by timed and combinatory treatment with extrinsic signals. J Neurosci 2011;31:19191933.
  • 12
    Nat R, Salti A, Suciu L et al. Pharmacological modulation of the hedgehog pathway differentially affects dorsal/ventral patterning in mouse and human embryonic stem cell models of telencephalic development. Stem Cells Dev 2012;21:10161046.
  • 13
    Watanabe K, Ueno M, Kamiya D et al. A ROCK inhibitor permits survival of dissociated human embryonic stem cells. Nat Biotechnol 2007;8:288296.
  • 14
    Aubry L, Bugi A, Lefort N et al. Striatal progenitors derived from human ES cells mature into DARPP32 neurons in vitro and in quinolinic acid-lesioned rats. Proc Natl Acad Sci U S A 2008;105:1670716712.
  • 15
    Li XJ, Zhang X, Johnson MA et al. Coordination of sonic hedgehog and Wnt signaling determines ventral and dorsal telencephalic neuron types from human embryonic stem cells. Development 2009;136:40554063.
  • 16
    Mariani J, Simonini MV, Palejev D et al. Modeling human cortical development in vitro using induced pluripotent stem cells. Proc Natl Acad Sci U S A 2012;109:1277012775.
  • 17
    Feyeux M, Bourgois-Rocha F, Redfern A et al. Early transcriptional changes linked to naturally occurring Huntington's disease mutations in neural derivatives of human embryonic stem cells. Hum Mol Genet 2012;21:38833895.
  • 18
    Chambers SM, Fasano CA, Papapetrou EP et al. Highly efficient neural conversion of human ES and iPS cells by dual inhibition of SMAD signaling. Nat Biotechnol 2009;27:275280.
  • 19
    Benchoua A, Aubry L, Perrier A. Method and medium for neural differentiation of pluripotent cells. EP2356218A1, WO/2010/063848; 2008.
  • 20
    Bulfone A, Puelles L, Porteus M et al. Spatially restricted expression of Dlx-1, Dlx-2 (Tes-1), Gbx-2, and Wnt-3 in the embryonic day 125 mouse forebrain defines potential transverse and longitudinal segmental boundaries. J Neurosci 1993;13:31553227.
  • 21
    Martinez-Ferre A, Navarro-Garberi M, Bueno C et al. Wnt signal specifies the intrathalamic limit and its organizer properties by regulating Shh induction in the alar plate. J Neurosci 2013;33:39673980.
  • 22
    Wilson L, Maden M. The mechanisms of dorsoventral patterning in the vertebrate neural tube. Dev Biol 2005;282:113.
  • 23
    Carri AD, Onorati M, Lelos MJ et al. Developmentally coordinated extrinsic signals drive human pluripotent stem cell differentiation toward authentic DARPP-32+ medium-sized spiny neurons. Development 2013;140:301312.
  • 24
    Ma L, Hu B, Liu Y et al. Human embryonic stem cell-derived GABA neurons correct locomotion deficits in quinolinic acid-lesioned mice. Cell Stem Cell 2012;10:455464.
  • 25
    Zhang X, Huang CT, Chen J et al. Pax6 is a human neuroectoderm cell fate determinant. Cell Stem Cell 2010;7:90100.
  • 26
    Mo Z, Zecevic N. Is Pax6 Critical for neurogenesis in the human fetal brain? Cereb Cortex 2007;5:13051310.
  • 27
    Larsen KB, Lutterodt MC, Laursen H et al. Spatiotemporal distribution of PAX6 and MEIS2 expression and total cell numbers in the ganglionic eminence in the early developing human forebrain. Dev Neurosci 2010;32:149162.
  • 28
    Ouimet CC, Greengard P. Distribution of DARPP-32 in the basal ganglia: an electron microscopic study. J Neurocytol 1990;19:3952.
  • 29
    Walaas SI, Greengard P. DARPP-32, a dopamine- and adenosine 3′:5′-monophosphate-regulated phosphoprotein enriched in dopamine-innervated brain regions. I. Regional and cellular distribution in the rat brain. J Neurosci 1984;4:8498.
  • 30
    Waldvogel HJ, Faull RL, Williams MN et al. Differential sensitivity of calbindin and parvalbumin immunoreactive cells in the striatum to excitotoxins. Brain Res 1991;546:329335.
  • 31
    Holt DJ, Graybiel AM, Saper CB. Neurochemical architecture of the human striatum. J Comp Neurol 1997;384:125.
  • 32
    Cicchetti F, Beach TG, Parent A. Chemical phenotype of calretinin interneurons in the human striatum. Synapse 1998;30:284297.
  • 33
    Tao W, Lai E. Telencephalon-restricted expression of BF-1, a new member of the HNF-3/fork head gene family, in the developing rat brain. Neuron 1992;8:957966.
  • 34
    Eagleson KL, Schlueter McFadyen-Ketchum LJ, Ahrens ET et al. Disruption of Foxg1 expression by knock-in of cre recombinase: effects on the development of the mouse telencephalon. Neuroscience 2007;148:385399.
  • 35
    Arlotta P, Molyneaux BJ, Jabaudon D et al. Ctip2 controls the differentiation of medium spiny neurons and the establishment of the cellular architecture of the striatum. J Neurosci 2008;28:622632.
  • 36
    Brene S, Lindefors N, Ehrlich M et al. Expression of mRNAs encoding ARPP-16/19, ARPP-21, and DARPP-32. Human Brain Tissue J Neurosci 1994;14:985998.
  • 37
    Ivkovic S, Ehrlich ME. Expression of the striatal DARPP-32/ARPP-21 phenotype in GABAergic neurons requires neurotrophins in vivo and in vitro. J Neurosci 1999;19:54095419.
  • 38
    Saavedra A, Giralt A, Rue L et al. Striatal-enriched protein tyrosine phosphatase expression and activity in Huntington's disease: a STEP in the resistance to excitotoxicity. J Neurosci 2011;31:81508162.
  • 39
    Hutcherson L, Roberts RC. The immunocytochemical localization of substance P in the human striatum: a postmortem ultrastructural study. Synapse 2005;57:191201.
  • 40
    Levine AJ, Brivanlou AH. Proposal of a model of mammalian neural induction. Dev Biol 2007;308:247256.
  • 41
    Perrier AL, Tabar V, Barberi T et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc Natl Acad Sci U S A 2004;101:1254312548.
  • 42
    Kirkeby A, Grealish S, Wolf Daniel A et al. Generation of regionally specified neural progenitors and functional neurons from human embryonic stem cells under defined conditions. Cell Reports 2012;1:703714.
  • 43
    Kriks S, Shim JW, Piao J et al. Dopamine neurons derived from human ES cells efficiently engraft in animal models of Parkinson's disease. Nature 2011;480:547551.
  • 44
    Simeone A, Acampora D, Mallamaci A et al. A vertebrate gene related to orthodenticle contains a homeodomain of the bicoid class and demarcates anterior neuroectoderm in the gastrulating mouse embryo. EMBO J 1993;12:2735.
  • 45
    Larsen KB, Lutterodt MC, Mollgard K et al. Expression of the homeobox genes OTX2 and OTX1 in the early developing human brain. J Histochem Cytochem 2010;58:669678.
  • 46
    Hashimoto H, Itoh M, Yamanaka Y et al. Zebrafish Dkk1 functions in forebrain specification and axial mesendoderm formation. Dev Biol 2000;217:138152.
  • 47
    Grove EA, Tole S, Limon J et al. The hem of the embryonic cerebral cortex is defined by the expression of multiple Wnt genes and is compromised in Gli3-deficient mice. Development 1998;125:23152325.
  • 48
    Augustine C, Gunnersen J, Spirkoska V et al. Place-and time-dependent expression of mouse sFRP-1 during development of the cerebral neocortex. Mech Dev 2001;109:395792.
  • 49
    Quinlan R, Graf M, Mason I et al. Complex and dynamic patterns of Wnt pathway gene expression in the developing chick forebrain. Neural Dev 2009;4:35.
  • 50
    Perrier A, Peschanski M. How can human pluripotent stem cells help decipher and cure Huntington's disease? Cell Stem Cell 2012;11:153161.
  • 51
    Bachoud-Levi AC, Gaura V, Brugieres P et al. Effect of fetal neural transplants in patients with Huntington's disease 6 years after surgery: a long-term follow-up study. Lancet Neurol 2006;5:303309.
  • 52
    Bachoud-Levi AC, Remy P, Nguyen JP et al. Motor and cognitive improvements in patients with Huntington's disease after neural transplantation. Lancet 2000;356:19751979.
  • 53
    Nicoleau C, Viegas P, Peschanski M et al. Human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges human pluripotent stem cell therapy for Huntington's disease: technical, immunological, and safety challenges. Neurotherapeutics 2011;8:562576.