SEARCH

SEARCH BY CITATION

Keywords:

  • Human embryonic stem cell;
  • DLK1-DIO3;
  • Physiological oxygen;
  • Epigenetics;
  • Apoptosis

Abstract

Genetic and epigenetic alterations are observed in long-term culture (>30 passages) of human embryonic stem cells (hESCs); however, little information is available in early cultures. Through a large-scale gene expression analysis between initial-passage hESCs (ihESCs, <10 passages) and early-passage hESCs (ehESCs, 20–30 passages) of 12 hESC lines, we found that the DLK1-DIO3 gene cluster was normally expressed and showed normal methylation pattern in ihESC, but was frequently silenced after 20 passages. Both the DLK1-DIO3 active status in ihESCs and the inactive status in ehESCs were inheritable during differentiation. Silencing of the DLK1-DIO3 cluster did not seem to compromise the multilineage differentiation ability of hESCs, but was associated with reduced DNA damage-induced apoptosis in ehESCs and their differentiated hepatocyte-like cell derivatives, possibly through attenuation of the expression and phosphorylation of p53. Furthermore, we demonstrated that 5% oxygen, instead of the commonly used 20% oxygen, is required for preserving the expression of the DLK1-DIO3 cluster. Overall, the data suggest that active expression of the DLK1-DIO3 cluster represents a new biomarker for epigenetic stability of hESCs and indicates the importance of using a proper physiological oxygen level during the derivation and culture of hESCs. Stem Cells 2014;32:391–401