SEARCH

SEARCH BY CITATION

References

  • 1
    Bell AJ, Figes A, Oscier DG et al. Peripheral blood stem cell autografts in the treatment of lymphoid malignancies: Initial experience in three patients. Br J Haematol 1987;66:6368.
  • 2
    To LB, Dyson PG, Branford AL et al. Peripheral blood stem cells collected in very early remission produce rapid and sustained autologous haemopoietic reconstitution in acute non-lymphoblastic leukaemia. Bone Marrow Transplant 1987;2:103108.
  • 3
    Reiffers J, Bernard P, David B et al. Successful autologous transplantation with peripheral blood hemopoietic cells in a patient with acute leukemia. Exp Hematol 1986;14:312315.
  • 4
    Kessinger A, Armitage JO, Landmark JD et al. Reconstitution of human hematopoietic function with autologous cryopreserved circulating stem cells. Exp Hematol 1986;14:192196.
  • 5
    Korbling M, Dorken B, Ho AD et al. Autologous transplantation of blood-derived hemopoietic stem cells after myeloablative therapy in a patient with Burkitt's lymphoma. Blood 1986;67:529532.
  • 6
    Lorenz E, Uphoff D, REID TR et al. Modification of irradiation injury in mice and guinea pigs by bone marrow injections. J Natl Cancer Inst 1951;12:197201.
  • 7
    Jacobson LO, Simmons EL, Marks EK et al. Recovery from radiation injury. Science 1951;113:510511.
  • 8
    Jacobson LO, Simmons EL, Marks EK et al. The role of the spleen in radiation injury and recovery. J Lab Clin Med 1950;35:746770.
  • 9
    Main JM, Prehn RT. Successful skin homografts after the administration of high dosage X radiation and homologous bone marrow. J Natl Cancer Inst 1955;15:10231029.
  • 10
    Ford CE, Hamerton JL, Barnes DW et al. Cytological identification of radiation-chimaeras. Nature 1956;177:452454.
  • 11
    Makinodan T. Circulating rat cells in lethally irradiated mice protected with rat bone marrow. Proc Soc Exp Biol Med 1956;92:174179.
  • 12
    Nowell PC, Cole LJ, Habermeyer JG et al. Growth and continued function of rat marrow cells in x-radiated mice. Cancer Res 1956;16:258261.
  • 13
    Trentin JJ. Mortality and skin transplantability in x-irradiated mice receiving isologous, homologous or heterologous bone marrow. Proc Soc Exp Biol Med 1956;92:688693.
  • 14
    Vos O, Davids JA, Weyzen WW et al. Evidence for the cellular hypothesis in radiation protection by bone marrow cells. Acta Physiol Pharmacol Neerl 1956;4:482486.
  • 15
    Wu AM, Till JE, Siminovitch L et al. A cytological study of the capacity for differentiation of normal hemopoietic colony-forming cells. J Cell Physiol 1967;69:177184.
  • 16
    Wu AM, Till JE, Siminovitch L et al. Cytological evidence for a relationship between normal hemotopoietic colony-forming cells and cells of the lymphoid system. J Exp Med 1968;127:455464.
  • 17
    Till JE, McCulloch EA. A direct measurement of the radiation sensitivity of normal mouse bone marrow cells. Radiat Res 1961;14:213222.
  • 18
    Siminovitch L, McCulloch EA, Till JE. The distribution of colony-forming cells among spleen colonies. J Cell Physiol 1963;62:327336.
  • 19
    Leung CG, Xu Y, Mularski B et al. Requirements for survivin in terminal differentiation of erythroid cells and maintenance of hematopoietic stem and progenitor cells. J Exp Med 2007;204:16031611.
  • 20
    Becker AJ, McCulloch EA, Till JE. Cytological demonstration of the clonal nature of spleen colonies derived from transplanted mouse marrow cells. Nature 1963;197:452454.
  • 21
    Woenckhaus E. Beitrag zur Allgemeinwirkung der Roentgenstrahlen. Arch F Exp Path Und Pharm 1930;150:182.
  • 22
    Brecher G, Cronkite EP. Post-radiation parabiosis and survival in rats. Proc Soc Exp Biol Med 1951;77:292294.
  • 23
    Bond VP, Fliedner TM, Cronkite EP et al. Proliferative potentials of bone marrow and blood cells studied by in vitro uptake of H3-thymidine. Acta Haematol 1959;21:115.
  • 24
    Bond VP, Cronkite EP, Fliedner TM et al. Deoxyribonucleic acid synthesizing cells in peripheral blood of normal human beings. Science 1958;128:202203.
  • 25
    Popp RA. Erythrocyte repopulation in X-irradiated recipients of nucleated, peripheral blood cells of normal mice. Proc Soc Exp Biol Med 1960;104:722724.
  • 26
    Goodman JW, Hodgson GS. Evidence for stem cells in the peripheral blood of mice. Blood 1962;19:702714.
  • 27
    Lewis JP, Passovoy M, Freeman M et al. The repopulating potential and differentiation capacity of hematopoietic stem cells from the blood and bone marrow of normal mice. J Cell Physiol 1968;71:121132.
  • 28
    Fliedner TM, Flad HD, Bruch C et al. Treatment of aplastic anemia by blood stem cell transfusion: A canine model. Haematologica 1976;61:141156.
  • 29
    Storb R, Epstein RB, Ragde H et al. Marrow engraftment by allogeneic leukocytes in lethally irradiated dogs. Blood 1967;30:805811.
  • 30
    Cavins JA, Scheer SC, Thomas ED et al. The recovery of lethally irradiated dogs given infusions of autologous leukocytes preserved at −80 °C. Blood 1964;23:3842.
  • 31
    Buckner D, Graw RG, Jr., Eisel RJ et al. Leukapheresis by continuous flow centrifugation (CFC) in patients with chronic myelocytic leukemia (CML). Blood 1969;33:353369.
  • 32
    Buckner D, Eisel R, Perry S. Blood cell separation in the dog by continuous flow centrifugation. Blood 1968;31:653672.
  • 33
    Freireich EJ, Judson G, Levin RH. Separation and collection of leukocytes. Cancer Res 1965;25:15161520.
  • 34
    Chervenick PA, Boggs DR. In vitro growth of granulocytic and mononuclear cell colonies from blood of normal individuals. Blood 1971;37:131135.
  • 35
    Kurnick JE, Robison WA. Colony growth of human peripheral white blood cells in vitro. Blood 1971;37:136141.
  • 36
    McCredie KB, Hersh EM, Freireich EJ. Cells capable of colony formation in the peripheral blood of man. Science 1971;171:293294.
  • 37
    Abrams RA, Glaubiger D, Appelbaum FR et al. Result of attempted hematopoietic reconstitution using isologous, peripheral blood mononuclear cells: A case report. Blood 1980;56:516520.
  • 38
    Hershko C, Gale RP, Ho WG et al. Cure of aplastic anaemia in paroxysmal nocturnal haemoglobinuria by marrow transfusion from identical twin: Failure of peripheral-leucocyte transfusion to correct marrow aplasia. Lancet 1979;1:945947.
  • 39
    Fliedner TM, Korbling M, Calvo W et al. Cryopreservation of blood mononuclear leukocytes and stem cells suspended in a large fluid volume. A preclinical model for a blood stem cell bank. Blut 1977;35:195202.
  • 40
    Goldman JM, Johnson SA, Catovsky D et al. Autografting for chronic granulocytic leukemia. N Engl J Med 1981;305:700.
  • 41
    Korbling M, Burke P, Braine H et al. Successful engraftment of blood derived normal hemopoietic stem cells in chronic myelogenous leukemia. Exp Hematol 1981;9:684690.
  • 42
    Goldman JM. Autografting cryopreserved buffy coat cells for chronic granulocytic leukaemia in transformation. Exp Hematol 1979;7(suppl 5):389397.
  • 43
    Greenberg P, Bax I, Mara B et al. Alterations of granulopoiesis following chemotherapy. Blood 1974;44:375383.
  • 44
    Bull JM, DeVita VT, Carbone PP. In vitro granulocyte production in patients with Hodgkin's disease and lymphocytic, histiocytic, and mixed lymphomas. Blood 1975;45:833842.
  • 45
    Senn JS, McCulloch EA. Kinetics of regeneration after cyclophosphamide in human marrow assessed by a cell culture method. Exp Hematol 1970;20:89.
  • 46
    Richman CM, Weiner RS, Yankee RA. Increase in circulating stem cells following chemotherapy in man. Blood 1976;47:10311039.
  • 47
    Stiff PJ, Murgo AJ, Wittes RE et al. Quantification of the peripheral blood colony forming unit-culture rise following chemotherapy. Could leukocytaphereses replace bone marrow for autologous transplantation? Transfusion 1983;23:500503.
  • 48
    To LB, Shepperd KM, Haylock DN et al. Single high doses of cyclophosphamide enable the collection of high numbers of hemopoietic stem cells from the peripheral blood. Exp Hematol 1990;18:442447.
  • 49
    To LB, Haylock DN, Kimber RJ et al. High levels of circulating haemopoietic stem cells in very early remission from acute non-lymphoblastic leukaemia and their collection and cryopreservation. Br J Haematol 1984;58:399410.
  • 50
    Welte K, Platzer E, Lu L et al. Purification and biochemical characterization of human pluripotent hematopoietic colony-stimulating factor. Proc Natl Acad Sci USA 1985;82:15261530.
  • 51
    Platzer E, Oez S, Welte K et al. Human pluripotent hemopoietic colony stimulating factor: Activities on human and murine cells. Immunobiology 1986;172:185193.
  • 52
    Nagata S, Tsuchiya M, Asano S et al. The chromosomal gene structure and two mRNAs for human granulocyte colony-stimulating factor. EMBO J 1986;5:575581.
  • 53
    Souza LM, Boone TC, Gabrilove J et al. Recombinant human granulocyte colony-stimulating factor: Effects on normal and leukemic myeloid cells. Science 1986;232:6165.
  • 54
    Welte K, Bonilla MA, Gillio AP et al. Recombinant human granulocyte colony-stimulating factor. Effects on hematopoiesis in normal and cyclophosphamide-treated primates. J Exp Med 1987;165:941948.
  • 55
    Duhrsen U, Villeval JL, Boyd J et al. Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 1988;72:20742081.
  • 56
    Ikebuchi K, Ihle JN, Hirai Y et al. Synergistic factors for stem cell proliferation: Further studies of the target stem cells and the mechanism of stimulation by interleukin-1, interleukin-6, and granulocyte colony-stimulating factor. Blood 1988;72:20072014.
  • 57
    Metcalf D, Nicola NA. Proliferative effects of purified granulocyte colony-stimulating factor (G-CSF) on normal mouse hemopoietic cells. J Cell Physiol 1983;116:198206.
  • 58
    Ikebuchi K, Clark SC, Ihle JN et al. Granulocyte colony-stimulating factor enhances interleukin 3-dependent proliferation of multipotential hemopoietic progenitors. Proc Natl Acad Sci USA 1988;85:34453449.
  • 59
    Gabrilove JL, Jakubowski A, Fain K et al. Phase I study of granulocyte colony-stimulating factor in patients with transitional cell carcinoma of the urothelium. J Clin Invest 1988;82:14541461.
  • 60
    Gabrilove JL, Jakubowski A, Scher H et al. Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 1988;318:14141422.
  • 61
    Bronchud MH, Scarffe JH, Thatcher N et al. Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 1987;56:809813.
  • 62
    Morstyn G, Campbell L, Souza LM et al. Effect of granulocyte colony stimulating factor on neutropenia induced by cytotoxic chemotherapy. Lancet 1988;1:667672.
  • 63
    Tamura M, Hattori K, Nomura H et al. Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun 1987;142:454460.
  • 64
    Kennedy MJ, Davis J, Passos-Coelho J et al. Administration of human recombinant granulocyte colony-stimulating factor (filgrastim) accelerates granulocyte recovery following high-dose chemotherapy and autologous marrow transplantation with 4-hydroperoxycyclophosphamide-purged marrow in women with metastatic breast cancer. Cancer Res 1993;53:54245428.
  • 65
    McQuaker IG, Hunter AE, Pacey S et al. Low-dose filgrastim significantly enhances neutrophil recovery following autologous peripheral-blood stem-cell transplantation in patients with lymphoproliferative disorders: Evidence for clinical and economic benefit. J Clin Oncol 1997;15:451457.
  • 66
    Jansen J, Thompson EM, Hanks S et al. Hematopoietic growth factor after autologous peripheral blood transplantation: Comparison of G-CSF and GM-CSF. Bone Marrow Transplant 1999;23:12511256.
  • 67
    Nemunaitis J, Rosenfeld CS, Ash R et al. Phase III randomized, double-blind placebo-controlled trial of rhGM-CSF following allogeneic bone marrow transplantation. Bone Marrow Transplant 1995;15:949954.
  • 68
    Stem Cell Trialists' Group. Allogeneic peripheral blood stem-cell compared with bone marrow transplantation in the management of hematologic malignancies: An individual patient data meta-analysis of nine randomized trials. J Clin Oncol 2005;23:50745087.
  • 69
    Anderlini P, Rizzo JD, Nugent ML et al. Peripheral blood stem cell donation: An analysis from the International Bone Marrow Transplant Registry (IBMTR) and European Group for Blood and Marrow Transplant (EBMT) databases. Bone Marrow Transplant 2001;27:689692.
  • 70
    Anderlini P, Przepiorka D, Korbling M et al. Blood stem cell procurement: Donor safety issues. Bone Marrow Transplant 1998;21(suppl 3):S35S39.
  • 71
    Rowley SD, Donaldson G, Lilleby K et al. Experiences of donors enrolled in a randomized study of allogeneic bone marrow or peripheral blood stem cell transplantation. Blood 2001;97:25412548.
  • 72
    Fortanier C, Kuentz M, Sutton L et al. Healthy sibling donor anxiety and pain during bone marrow or peripheral blood stem cell harvesting for allogeneic transplantation: Results of a randomised study. Bone Marrow Transplant 2002;29:145149.
  • 73
    Platzbecker U, Prange-Krex G, Bornhauser M et al. Spleen enlargement in healthy donors during G-CSF mobilization of PBPCs. Transfusion 2001;41:184189.
  • 74
    Stroncek D, Shawker T, Follmann D et al. G-CSF-induced spleen size changes in peripheral blood progenitor cell donors. Transfusion 2003;43:609613.
  • 75
    Falzetti F, Aversa F, Minelli O et al. Spontaneous rupture of spleen during peripheral blood stem-cell mobilisation in a healthy donor. Lancet 1999;353:555.
  • 76
    Becker PS, Wagle M, Matous S et al. Spontaneous splenic rupture following administration of granulocyte colony-stimulating factor (G-CSF): Occurrence in an allogeneic donor of peripheral blood stem cells. Biol Blood Marrow Transplant 1997;3:4549.
  • 77
    Balaguer H, Galmes A, Ventayol G et al. Splenic rupture after granulocyte-colony-stimulating factor mobilization in a peripheral blood progenitor cell donor. Transfusion 2004;44:12601261.
  • 78
    Kroger N, Renges H, Sonnenberg S et al. Stem cell mobilisation with 16 microg/kg vs 10 microg/kg of G-CSF for allogeneic transplantation in healthy donors. Bone Marrow Transplant 2002;29:727730.
  • 79
    Hill JM, Syed MA, Arai AE et al. Outcomes and risks of granulocyte colony-stimulating factor in patients with coronary artery disease. J Am Coll Cardiol 2005;46:16431648.
  • 80
    Lindemann A, Rumberger B. Vascular complications in patients treated with granulocyte colony-stimulating factor (G-CSF). Eur J Cancer 1993;29A:23382339.
  • 81
    Pusic I, Jiang SY, Landua S et al. Impact of mobilization and remobilization strategies on achieving sufficient stem cell yields for autologous transplantation. Biol Blood Marrow Transplant 2008;14:10451056.
  • 82
    Pavone V, Gaudio F, Console G et al. Poor mobilization is an independent prognostic factor in patients with malignant lymphomas treated by peripheral blood stem cell transplantation. Bone Marrow Transplant 2006;37:719724.
  • 83
    Hosing C, Saliba RM, Ahlawat S et al. Poor hematopoietic stem cell mobilizers: A single institution study of incidence and risk factors in patients with recurrent or relapsed lymphoma. Am J Hematol 2009;84:335337.
  • 84
    Gordan LN, Sugrue MW, Lynch JW et al. Poor mobilization of peripheral blood stem cells is a risk factor for worse outcome in lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2003;44:815820.
  • 85
    Akhtar S, Weshi AE, Rahal M et al. Factors affecting autologous peripheral blood stem cell collection in patients with relapsed or refractory diffuse large cell lymphoma and Hodgkin lymphoma: A single institution result of 168 patients. Leuk Lymphoma 2008;49:769778.
  • 86
    Boeve S, Strupeck J, Creech S et al. Analysis of remobilization success in patients undergoing autologous stem cell transplants who fail an initial mobilization: Risk factors, cytokine use and cost. Bone Marrow Transplant 2004;33:9971003.
  • 87
    Sugrue MW, Williams K, Pollock BH et al. Characterization and outcome of “hard to mobilize”' lymphoma patients undergoing autologous stem cell transplantation. Leuk Lymphoma 2000;39:509519.
  • 88
    Weaver CH, Hazelton B, Birch R et al. An analysis of engraftment kinetics as a function of the CD34 content of peripheral blood progenitor cell collections in 692 patients after the administration of myeloablative chemotherapy. Blood 1995;86:39613969.
  • 89
    Gertz MA, Wolf RC, Micallef IN et al. Clinical impact and resource utilization after stem cell mobilization failure in patients with multiple myeloma and lymphoma. Bone Marrow Transplant 2010;45:13961403.
  • 90
    Hosing C, Smith V, Rhodes B et al. Assessing the charges associated with hematopoietic stem cell mobilization and remobilization in patients with lymphoma and multiple myeloma undergoing autologous hematopoietic peripheral blood stem cell transplantation. Transfusion 2011;51:13001313.
  • 91
    Petit I, Szyper-Kravitz M, Nagler A et al. G-CSF induces stem cell mobilization by decreasing bone marrow SDF-1 and up-regulating CXCR4. Nat Immunol 2002;3:687694.
  • 92
    Broxmeyer HE, Orschell CM, Clapp DW et al. Rapid mobilization of murine and human hematopoietic stem and progenitor cells with AMD3100, a CXCR4 antagonist. J Exp Med 2005;201:13071318.
  • 93
    Broxmeyer HE, Hangoc G, Cooper S et al. AMD3100 and CD26 modulate mobilization, engraftment, and survival of hematopoietic stem and progenitor cells mediated by the SDF-1/CXCL12-CXCR4 axis. Ann N Y Acad Sci 2007;1106:119.
  • 94
    Devine SM, Vij R, Rettig M et al. Rapid mobilization of functional donor hematopoietic cells without G-CSF using AMD3100, an antagonist of the CXCR4/SDF-1 interaction. Blood 2008;112:990998.
  • 95
    Liles WC, Broxmeyer HE, Rodger E et al. Mobilization of hematopoietic progenitor cells in healthy volunteers by AMD3100, a CXCR4 antagonist. Blood 2003;102:27282730.
  • 96
    Liles WC, Rodger E, Broxmeyer HE et al. Augmented mobilization and collection of CD34+ hematopoietic cells from normal human volunteers stimulated with granulocyte-colony-stimulating factor by single-dose administration of AMD3100, a CXCR4 antagonist. Transfusion 2005;45:295300.
  • 97
    Pelus LM, Bian H, Fukuda S et al. The CXCR4 agonist peptide, CTCE-0021, rapidly mobilizes polymorphonuclear neutrophils and hematopoietic progenitor cells into peripheral blood and synergizes with granulocyte colony-stimulating factor. Exp Hematol 2005;33:295307.
  • 98
    Abraham M, Biyder K, Begin M et al. Enhanced unique pattern of hematopoietic cell mobilization induced by the CXCR4 antagonist 4F-benzoyl-TN14003. Stem Cells 2007;25:21582166.
  • 99
    Iyer CV, Evans RJ, Lou Q et al. Rapid and recurrent neutrophil mobilization regulated by T134, a CXCR4 peptide antagonist. Exp Hematol 2008;36:10981109.
  • 100
    Shen H, Cheng T, Olszak I et al. CXCR-4 desensitization is associated with tissue localization of hemopoietic progenitor cells. J Immunol 2001;166:50275033.
  • 101
    Zhong R, Law P, Wong D et al. Small peptide analogs to stromal derived factor-1 enhance chemotactic migration of human and mouse hematopoietic cells. Exp Hematol 2004;32:470475.
  • 102
    Cramer DE, Wagner S, Li B et al. Mobilization of hematopoietic progenitor cells by yeast-derived beta-glucan requires activation of matrix metalloproteinase-9. Stem Cells 2008;26:12311240.
  • 103
    Patchen ML, Liang J, Vaudrain T et al. Mobilization of peripheral blood progenitor cells by Betafectin PGG-Glucan alone and in combination with granulocyte colony-stimulating factor. Stem Cells 1998;16:208217.
  • 104
    Frenette PS, Weiss L. Sulfated glycans induce rapid hematopoietic progenitor cell mobilization: Evidence for selectin-dependent and independent mechanisms. Blood 2000;96:24602468.
  • 105
    Sweeney EA, Priestley GV, Nakamoto B et al. Mobilization of stem/progenitor cells by sulfated polysaccharides does not require selectin presence. Proc Natl Acad Sci USA 2000;97:65446549.
  • 106
    Sweeney EA, Lortat-Jacob H, Priestley GV et al. Sulfated polysaccharides increase plasma levels of SDF-1 in monkeys and mice: Involvement in mobilization of stem/progenitor cells. Blood 2002;99:4451.
  • 107
    Kubonishi S, Kikuchi T, Yamaguchi S et al. Rapid hematopoietic progenitor mobilization by sulfated colominic acid. Biochem Biophys Res Commun 2007;355:970975.
  • 108
    Albanese P, Caruelle D, Frescaline G et al. Glycosaminoglycan mimetics-induced mobilization of hematopoietic progenitors and stem cells into mouse peripheral blood: Structure/function insights. Exp Hematol 2009;37:10721083.
  • 109
    Craddock CF, Nakamoto B, Andrews RG et al. Antibodies to VLA4 integrin mobilize long-term repopulating cells and augment cytokine-induced mobilization in primates and mice. Blood 1997;90:47794788.
  • 110
    Papayannopoulou T, Priestley GV, Nakamoto B et al. Molecular pathways in bone marrow homing: Dominant role of alpha(4)beta(1) over beta(2)-integrins and selectins. Blood 2001;98:24032411.
  • 111
    Kikuta T, Shimazaki C, Ashihara E et al. Mobilization of hematopoietic primitive and committed progenitor cells into blood in mice by anti-vascular adhesion molecule-1 antibody alone or in combination with granulocyte colony-stimulating factor. Exp Hematol 2000;28:311317.
  • 112
    Papayannopoulou T, Priestley GV, Nakamoto B. Anti-VLA4/VCAM-1-induced mobilization requires cooperative signaling through the kit/mkit ligand pathway. Blood 1998;91:22312239.
  • 113
    Ramirez P, Rettig MP, Uy GL et al. BIO5192, a small molecule inhibitor of VLA-4, mobilizes hematopoietic stem and progenitor cells. Blood 2009;114:13401343.
  • 114
    Ting M, Day B, Spanevello M et al. Activation of ephrin A proteins influences hematopoietic stem cell adhesion and trafficking patterns. Exp Hematol 2010;38:10871098.
  • 115
    Carlo-Stella C, Di NM, Magni M et al. Defibrotide in combination with granulocyte colony-stimulating factor significantly enhances the mobilization of primitive and committed peripheral blood progenitor cells in mice. Cancer Res 2002;62:61526157.
  • 116
    Scalia R, Kochilas L, Campbell B et al. Effects of defibrotide on leukocyte-endothelial cell interaction in the rat mesenteric vascular bed: Role of P-selectin. Methods Find Exp Clin Pharmacol 1996;18:669676.
  • 117
    Pellegatta F, Lu Y, Radaelli A et al. Drug-induced in vitro inhibition of neutrophil-endothelial cell adhesion. BR. J Pharmacol 1996;118:471476.
  • 118
    Fibbe WE, Pruijt JF, van KY et al. The role of metalloproteinases and adhesion molecules in interleukin-8-induced stem-cell mobilization. Semin Hematol 2000;37(1 suppl 2):1924.
  • 119
    Pelus LM, Horowitz D, Cooper SC et al. Peripheral blood stem cell mobilization. A role for CXC chemokines. Crit Rev Oncol Hematol 2002;43:257275.
  • 120
    Fukuda S, Bian H, King AG et al. The chemokine GRObeta mobilizes early hematopoietic stem cells characterized by enhanced homing and engraftment. Blood 2007;110:860869.
  • 121
    King AG, Horowitz D, Dillon SB et al. Rapid mobilization of murine hematopoietic stem cells with enhanced engraftment properties and evaluation of hematopoietic progenitor cell mobilization in rhesus monkeys by a single injection of SB-251353, a specific truncated form of the human CXC chemokine GRObeta. Blood 2001;97:15341542.
  • 122
    Pelus LM, Bian H, King AG et al. Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 2004;103:110119.
  • 123
    Pruijt JF, Verzaal P, van OR et al. Neutrophils are indispensable for hematopoietic stem cell mobilization induced by interleukin-8 in mice. Proc Natl Acad Sci USA 2002;99:62286233.
  • 124
    Kimura T, Boehmler AM, Seitz G et al. The sphingosine 1-phosphate receptor agonist FTY720 supports CXCR4-dependent migration and bone marrow homing of human CD34+ progenitor cells. Blood 2004;103:44784486.
  • 125
    Ryser MF, Ugarte F, Lehmann R et al. S1P(1) overexpression stimulates S1P-dependent chemotaxis of human CD34+ hematopoietic progenitor cells but strongly inhibits SDF-1/CXCR4-dependent migration and in vivo homing. Mol Immunol 2008;46:166171.
  • 126
    Seitz G, Boehmler AM, Kanz L et al. The role of sphingosine 1-phosphate receptors in the trafficking of hematopoietic progenitor cells. Ann N Y Acad Sci 2005;1044:8489.
  • 127
    Allende ML, Tuymetova G, Lee BG et al. S1P1 receptor directs the release of immature B cells from bone marrow into blood. J Exp Med 2010;207:11131124.
  • 128
    Massberg S, Schaerli P, Knezevic-Maramica I et al. Immunosurveillance by hematopoietic progenitor cells trafficking through blood, lymph, and peripheral tissues. Cell 2007;131:9941008.
  • 129
    Ratajczak MZ, Lee H, Wysoczynski M et al. Novel insight into stem cell mobilization-plasma sphingosine-1-phosphate is a major chemoattractant that directs the egress of hematopoietic stem progenitor cells from the bone marrow and its level in peripheral blood increases during mobilization due to activation of complement cascade/membrane attack complex. Leukemia 2010;24:976985.
  • 130
    Golan K, Vagima Y, Ludin A et al. S1P promotes murine progenitor cell egress and mobilization via S1P1-mediated ROS signaling and SDF-1 release. Blood 2012;119:24782488.
  • 131
    Juarez JG, Harun N, Thien M et al. Sphingosine-1-phosphate facilitates trafficking of hematopoietic stem cells and their mobilization by CXCR4 antagonists in mice. Blood 2012;119:707716.
  • 132
    Ratajczak J, Kucia M, Mierzejewska K et al. A novel view of paroxysmal nocturnal hemoglobinuria pathogenesis: More motile PNH hematopoietic stem/progenitor cells displace normal HSPCs from their niches in bone marrow due to defective adhesion, enhanced migration and mobilization in response to erythrocyte-released sphingosine-1 phosphate gradient. Leukemia 2012;26:17221725.
  • 133
    Ratajczak MZ, Borkowska S, Ratajczak J. An emerging link in stem cell mobilization between activation of the complement cascade and the chemotactic gradient of sphingosine-1-phosphate. Prostaglandins Other Lipid Mediat 2013;104-105:122129.
  • 134
    Hoggatt J, Pelus LM. Eicosanoid regulation of hematopoiesis and hematopoietic stem and progenitor trafficking. Leukemia 2010;24:19932002.
  • 135
    Hoggatt J, Singh P, Sampath J et al. Prostaglandin E2 enhances hematopoietic stem cell homing, survival, and proliferation. Blood 2009;113:54445455.
  • 136
    Hoggatt J, Mohammad KS, Singh P et al. Differential stem- and progenitor-cell trafficking by prostaglandin E2. Nature 2013;494:365369.
  • 137
    Katayama Y, Battista M, Kao WM et al. Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 2006;124:407421.
  • 138
    Spiegel A, Shivtiel S, Kalinkovich A et al. Catecholaminergic neurotransmitters regulate migration and repopulation of immature human CD34+ cells through Wnt signaling. Nat Immunol 2007;8:11231131.
  • 139
    Gruber-Olipitz M, Stevenson R, Olipitz W et al. Transcriptional pattern analysis of adrenergic immunoregulation in mice. Twelve hours norepinephrine treatment alters the expression of a set of genes involved in monocyte activation and leukocyte trafficking. J Neuroimmunol 2004;155:136142.
  • 140
    DiPersio JF, Stadtmauer AP, Nademanee AP et al. A phase III, multicenter, randomized, double blind, placebo-controlled, comparative trial of AMD3100 (Perixafor) + G-CSF vs. G-CSF + placebo for mobilization in multiple myeloma (MM) patients for autologous hematopoietic stem cell (aHSC) transplantation [abstract]. Blood 2007;110:137a.
  • 141
    DiPersio JF, Stadtmauer EA, Nademanee A et al. Plerixafor and G-CSF versus placebo and G-CSF to mobilize hematopoietic stem cells for autologous stem cell transplantation in patients with multiple myeloma. Blood 2009;113:57205726.
  • 142
    DiPersio JF, Micallef IN, Stiff PJ et al. Phase III prospective randomized double-blind placebo-controlled trial of plerixafor plus granulocyte colony-stimulating factor compared with placebo plus granulocyte colony-stimulating factor for autologous stem-cell mobilization and transplantation for patients with non-Hodgkin's lymphoma. J Clin Oncol 2009;27:47674773.
  • 143
    Pelus LM. Peripheral blood stem cell mobilization: New regimens, new cells, where do we stand. Curr Opin Hematol 2008;15:285292.
  • 144
    Kymes SM, Pusic I, Lambert DL et al. Economic evaluation of plerixafor for stem cell mobilization. Am J Manag Care 2012;18:3341.
  • 145
    Chen AI, Bains T, Murray S et al. Clinical experience with a simple algorithm for plerixafor utilization in autologous stem cell mobilization. Bone Marrow Transplant 2012;47:15261529.
  • 146
    Costa LJ, Alexander ET, Hogan KR et al. Development and validation of a decision-making algorithm to guide the use of plerixafor for autologous hematopoietic stem cell mobilization. Bone Marrow Transplant 2011;46:6469.
  • 147
    Micallef IN, Sinha S, Gastineau DA et al. Cost-effectiveness analysis of a risk-adapted algorithm of plerixafor use for autologous peripheral blood stem cell mobilization. Biol Blood Marrow Transplant 2013;19:8793.
  • 148
    Fruehauf S, Veldwijk MR, Seeger T et al. A combination of granulocyte-colony-stimulating factor (G-CSF) and plerixafor mobilizes more primitive peripheral blood progenitor cells than G-CSF alone: Results of a European phase II study. Cytotherapy 2009;11:9921001.
  • 149
    Hoggatt J, Pelus LM. Hematopoietic stem cell mobilization with agents other than G-CSF. Methods Mol Biol 2012;904:4967.
  • 150
    Pelus LM, Fukuda S. Peripheral blood stem cell mobilization: The CXCR2 ligand GRObeta rapidly mobilizes hematopoietic stem cells with enhanced engraftment properties. Exp Hematol 2006;34:10101020.
  • 151
    Hill JM, Zalos G, Halcox JP et al. Circulating endothelial progenitor cells, vascular function, and cardiovascular risk. N Engl J Med 2003;348:593600.
  • 152
    Larochelle A, Krouse A, Metzger M et al. AMD3100 mobilizes hematopoietic stem cells with long-term repopulating capacity in nonhuman primates. Blood 2006;107:37723778.