• 1
    Lord BI. The architecture of bone marrow cell populations. Int J Cell Cloning 1990; 8: 317331.
  • 2
    Maloney M, Patt H. Stem cells of renewing populations. In: CairnieA, eds. Regulation of Stem Cells After Local Bone Marrow Injury: the Role of an Osseous Environment. New York: Academic Press, 1976: 239253
  • 3
    Nilsson S, Debatis M, Quesenberry P, et al. Extracellular matrix regulation of stem cell homing. Blood 1996; 88 (suppl 1):632a
  • 4
    Gong J. Endosteal marrow: a rich source of hematopoietic stem cells. Science 1978; 199: 14431445.
  • 5
    Mayani H, Guilbert LJ, Jamowska-Wieczorek A. Biology of the hemopoietic microenvironment. Eur J Haematol 1992; 49: 225233.
  • 6
    Metcalf D. The Molecular Control of Blood Cells. Cambridge, MA: Harvard University Press, 1988: 1165
  • 7
    Sutherland HJ, Lansdorp PM, Henkelman DH, et al. Functional characterization of individual human hematopoietic stem cells cultured at limiting dilution on supportive marrow stromal layers. Proc Natl Acad Sci USA 1990; 87: 35843588.
  • 8
    Dexter TM, Coutinhot LH, Spooncer E. Stromal cells in hematopoiesis. In: GBlack, J.Marsh, eds. Molecular Control of Haemopoiesis. Ciba Foundation Symposium. 1990; 148: 76100.
  • 9
    Dexter TM, Spooncer E. Growth and differentiation in the hemopoietic system. Ann Rev Cell Biol 1987; 3: 432441.
  • 10
    Ohtsuki T, Suzu S, Nagata N, et al. A human osteoblastic cell line, MG-63, produces two molecular types of macrophage-colony-stimulating factor. Biochim Biophys Acta 1992; 1136: 297301.
  • 11
    Taichman RS, Reilly MJ, Emerson SG. Human osteoblasts support human progenitor cells in in vitro bone marrow cultures. Blood 1996; 87: 518524.
  • 12
    Taichman RS, Emerson SG. Human osteoblasts support hematopoiesis through the production of granulocyte colony-stimulating factor. J Exp Med 1994; 179: 16771682.
  • 13
    Chambers T. The cellular basis of bone resorption. Clin Orthop 1980; 151: 283293.
  • 14
    Matayoshi A, Brown C, Dipersio J, et al. Human blood-mobilized hematopoietic precursors differentiate into osteoclasts in the absence of stromal cells. Proc Natl Acad Sci USA 1996; 93: 1078510790.
  • 15
    Roodman G. Osteoclast differentiation. Crit Rev Oral Biol Med 1991; 23892409.
  • 16
    Roodman G. Role of cytokines in the regulation of bone resorption. Calcif Tissue Int 1993; 53 (suppl 1);S94S98.
  • 17
    Takahashi N, Udagawa N, Akatsu T, et al. Role of colony-stimulating factors in osteoclast development. J Bone Miner Res 1991; 6: 977985.
  • 18
    Marks SCJ, Mackay CA, Jackson ME, et al. The skeletal effects of colony-stimulating factor-1 in toothless (osteopetrotic) rats: persistent metaphyseal sclerosis and the failure to restore subepiphyseal osteoclasts. Bone 1993; 14: 675680.
  • 19
    Owens JM, Gallagher AC, Chambers TJ. Bone cells required for osteoclastic resorption but not for osteoclastic differentiation. Biochem Biophys Res Commun 1996; 222: 225229.
  • 20
    Rodan GA, Martin TJ. Role of osteoblasts in hormonal control of bone resorption—a hypothesis. Calcif Tissue Int 1982; 34: 331332.
  • 21
    Sakamoto S, Sakamoto M, Goldberg L, et al. Mineralization induced by beta-glycerophosphate in cultures leads to a marked increase in collagenase synthesis by mouse osteogenic MC3T3-E1 cells under subsequent stimulation with heparin. Biochem Biophys Res Commun 1989; 162: 773780.
  • 22
    Sakamoto S, Sakamoto M. Osteoblast collagenase: collagenase synthesis by clonally derived mouse osteogenic (MC3T3-E1) cells. Biochem Int 1984; 9: 5158.
  • 23
    Koller M, Palsson B. Tissue engineering: reconstitution of human hematopoiesis ex vivo. Biotechnol Bioeng 1993; 42: 909930.
  • 24
    Basle MF, Mazaud P, Malkani K, et al. Isolation of osteoclasts from pagetic bone tissue morphometry and cytochemistry on isolated cells. Bone 1988; 9: 16.
  • 25
    Baron R. Anatomy and ultrastructure of bone. In: FavusM, ed. Primer on the Metabolic Bone Diseases and Disorders of Mineral Metabolism, 3rd ed. Philadelphia: Lippincott-Raven, 1996: 210
  • 26
    Taichman RS, Reilly MJ, Verma RS, et al. Augmented production of interleukin-6 by normal human osteoblasts in response to CD34+ hematopoietic bone marrow cells in vitro. Blood 1997; 89: 11651172.
  • 27
    Friedenstein AJ, Chailakhjan RK. The development of fibroblast colonies in monolayer cultures of guinea pig bone marrow and spleen cells. Cell Tissue Kinet 1970; 3: 393402.
  • 28
    Ashton BA, Allen TD, Howelett CR, et al. Formation of bone and cartilage by bone marrow stromal cells in diffusion chambers in vivo. Clin Orthop 1994; 151: 294307.
  • 29
    Grigoriadis AE, Heersche NJ, Aubin JE. Differentiation of muscle, fat, cartilage and bone from progenitor cells present in a bone derived clonal cell population: effect of dexamethasone. J Cell Physiol 1988; 106: 21392151.
  • 30
    Long MW, Williams LJ, Mann KG. Expression of human bone-related proteins in the hematopoietic microenvironment. J Clin Invest 1990; 86: 13871397.
  • 31
    Campell AD, Long MW, Wicha MS. Haemonectin, a bone marrow adhesion protein specific for cells of granulocyte lineage. Nature 1987; 329: 744746.
  • 32
    Dexter TM, Lajatha LG. Proliferation of haematopoietic stem cells in vitro. Br J Haematol 1974; 28: 525530.
  • 33
    Dexter TM, Allen TD, Lajtha LG. Conditions controlling the proliferation of haemopoietic stem cells in vitro. J Cell Physiol 1977; 91: 335344.
  • 34
    Whitlock CA, Witte ON. Long-term culture of B lymphocytes and their precursors from murine bone marrow. Proc Natl Acad Sci USA 1982; 79: 36083612.
  • 35
    Quesenberry PJ. Stromal cells in long-term bone marrow cultures. In: TavassoliM, eds. Handbook of the Hematopoietic Microenvironment. Clifton, NJ: Humana Press, 1989: 253285
  • 36
    Long MW, Wicha MS. The molecular mechanism for recognition of intravenously transplanted progenitor cells. In: TavassoliM, HardyCL, eds. The Hematopoietic Microenvironment: The Functional Basis of Blood Cell Development. Baltimore, MD: Johns Hopkins University Press, 1993: 217231
  • 37
    Kittler ELW, McGrath H, Temeles D, et al. Biologic significance of constitutive and subliminal growth factor production by bone marrow stroma. Blood 1992; 79: 31683178.
  • 38
    Guba SC, Sartor CI, Gottschalk LR, et al. Bone marrow stromal fibroblasts secrete interleukin-6 and granulocyte-macrophage colony-stimulating factor in the absence of inflammatory stimulation: demonstration by serum-free bioassay, enzyme-linked immunoabsorbent assay and reverse transcriptase polymerase chain reaction. Blood 1992; 80: 11901198.
  • 39
    Benayahu D, Horowitz M, Zipori D, et al. Hematopoietic functions of marrow-derived osteogenic cells. Calcif Tiss Intl 1992; 51: 195201.
  • 40
    Benayahu D, Fried A, Zipori D, et al. Subpopulations of marrow stromal cells share a variety of osteoblast markers. Calcif Tissue Int 1991; 49: 202207.
  • 41
    Mathieu E, Merregaert JM. Characterization of the stromal osteogenic cell line MN7: effects of PTH, 1,25(OH)2D3 and 17b-E2 at the mRNA level. Calcif Tissue Int 1992; 50:A14.
  • 42
    Theis RS, Bauduy M, Ashton BA, et al. Recombinant human bone morphogenic protein-2 induces osteogenic differentiation in W-20-17 stromal cells. Endocrinology 1992; 130: 13181324.
  • 43
    Dorheim MA, Sullivan M, Dandapani V, et al. Osteoblastic gene expression during adiposegenesis in hematopoietic supporting murine bone marrow stromal cells. J Cell Physiol 1993; 154: 317328.
  • 44
    Reddi AH, Huettner KE. Vascular invasion of cartilage: correlation of morphology with lysozyme, glycosaminoglycans, protease, and protease-inhibitory activity during endochondral bone development. Dev Bio 1981; 832: 217223.
  • 45
    Urist MR, DeLange R, Feinerman GAM. Bone cell differentiation and growth factors. Science 1983; 220: 680686.
  • 46
    Shinner D, Rodan GA. The hematopoietic microenvironment: functional basis of blood cell development. In: LongMW, WichaMS, eds. Relationships and Interactions Between Bone and Bone Marrow. Baltimore, MD: Johns Hopkins University Press, 1993: 70109
  • 47
    Felix R, Elford PR, Stoeckle C, et al. Production of hemopoietic growth factors by bone tissue and bone cells in culture. J Bone Miner Res 1988; 3: 2736.
  • 48
    Elford PR, Felix R, Cecchini M, et al. Murine osteoblast-like cells and osteogenic cell MC3T3-E1 release a macrophage colony-stimulating activity in culture. Calcif Tissue Int 1987; 41: 151156.
  • 49
    Horowitz MC, Einhorn TA, Philbrick W, et al. Functional and molecular changes in colony stimulating factor secretion by osteoblasts. Conn Tiss Res 1989; 20: 159168.
  • 50
    Hanazawa S, Amano S, Nakada K, et al. Biological characterization of interleukin-1-like cytokine produced by bone cells from newborn mouse calvaria. Calcif Tissue Int 1987; 41: 3137.
  • 51
    Ishimi Y, Miyaura C, Jin CH, et al. IL-6 is produced by osteoblasts and induces bone resorption. J Immunol 1990; 145: 32973303.
  • 52
    Feyen JHM, ELford P, DiPadova FE, et al. Interleukin-6 is produced by bone and modulated by parathyroid hormone. J Bone Miner Res 1989; 4: 633638.
  • 53
    Horowitz MC, Coleman DL, Tyaby JT, et al. Osteotropic agents induce the differential secretion of granulocyte-macrophage colony-stimulating factor by the osteoblast cell line MC3T3-E1. J Bone Miner Res 1989; 4: 911921.
  • 54
    Hanazawa S, Ohmori Y, Amano S, et al. Spontaneous production of interleukin-1-like cytokine from a mouse osteoblastic cell line (MC3T3-E1). Biochem Biophys Res Commun 1985; 131: 774779.
  • 55
    Weir EC, Insogna KL, Horowitz MC. Osteoblast-like cells secrete granulocyte-macrophage colony-stimulating factor in response to parathyroid hormone and lipopolysaccharide. Endocrinology 1989; 124: 899904.
  • 56
    Ralston SH. Analysis of gene expression in human bone biopsies by polymerase chain reaction: evidence for enhanced cytokine expression in postmenopausal osteoporosis. J Bone Miner Res 1994; 9: 883890.
  • 57
    Birch MA, Ginty AF, Walsh CA, et al. PCR detection of cytokines in normal human and pagetic osteoblast-like cells. J Bone Miner Res 1993; 8: 11551162.
  • 58
    Dodds RA, Maerry K, Littlewood A, et al. Expression of mRNA for IL1β, IL6 and TGFβ1 in developing human bone and cartilage. J Histochem Cytochem 1994; 42: 733744.
  • 59
    Zheng MH, Wood DJ, Wysocki S, et al. Recombinant human bone morphogenic protein-2 enhances expression of interleukin-6 and transforming growth factor-beta 1 genes in normal human osteoblast-like cells. J Cell Physiol 1994; 159: 7682.
  • 60
    Marie PJ, Hott M, Launay JM, et al. In vitro production of cytokines by bone surface-derived osteoblastic cells in normal and osteoporotic postmenopausal women: relationship with cell proliferation. J Clin Endocrinol Metab 1993; 77: 824830.
  • 61
    Marusic A, Kalinowski J, Jastrzebski S, et al. Production of leukemia inhibitory factor mRNA and protein by malignant and immortalized bone cells. J Bone Miner Res 1993; 8: 617624.
  • 62
    Greenfield E, Horowitz M, Lavish S. Stimulation by parathyroid hormone of interleukin-6 and leukemia inhibitory factor expression in osteoblasts is an immediate-early gene response induced by cAMP signal transduction. J Biol Chem 1996; 271: 1098410989.
  • 63
    Osawa M, Hanada K, Hamada H, et al. Long-term lymphohematopoietic reconstitution by a single CD34-low/negative hematopoietic stem cell. Science 1996; 273: 242245.
  • 64
    Gowen M, Chapman K, Littlewood A, et al. Production of TNF by human osteoblasts is modulated by other cytokines but not by osteopetrotic hormones. Endocrinology 1990; 126: 12501255.
  • 65
    Goad D, Rubin J, Wang H, et al. Enhanced expression of vascular cell endothelial growth factor in human SaOS-2 osteoblast-like cells and murine osteoblasts induced by insulin-like growth factor I. ENDO 1996; 137: 22622268.
  • 66
    Robey PG, Young MF, Flanders KC, et al. Osteoblasts synthesize and respond to transforming growth factor-type β (TGF-β) in vitro. J Cell Biol 1987; 105: 457463.
  • 67
    Benayahu D, Gurevitch O, Zipori D, et al. Bone formation by marrow osteogenic cells (MBA-15) is not accompanied by osteoclastogenesis and generation of hematopoietic supportive microenvironment. J Bone Miner Res 1994; 9: 11071114.
  • 68
    Hermans MN, Hartsuiker H, Opstelten D. An in situ study of B-lymphocytopoiesis in rat bone marrow. Topographical arrangement of terminal deoxynucleotidyl transferase-positive cells and pre-B cells. J Immunol 1989; 142: 6773.
  • 69
    Verfaillie CM. Direct contact between human primitive hematopoietic progenitors and bone marrow stroma is not required for long-term in vitro hematopoiesis. Blood 1992; 79: 28212826.
  • 70
    Trentin JJ. Hematopoietic micorenvironments: historical perspectives, status, projections. In: TavassoliM, eds. Handbook of the Hemopoietic Microenvironment. Clifton, NJ: Humana Press, 1989: 178
  • 71
    Simmons PJ, Zannettino A, Gronthos S, et al. Potential adhesion mechanisms for localization of hematopoietic progenitors to bone marrow stroma. Leuk Lymphoma 1994; 12: 353363.
  • 72
    Coombe DR, Watt SM, Rarish CR. Mac-1(CD11b/CD18) and CD45 mediate the adhesion of hematopoietic progenitor cells to stromal cell elements via recognition of stromal heparin sulfate. Blood 1994; 84: 739752.
  • 73
    Simmons PJ, Masinovsky B, Longenecker BM, et al. Vascular cell adhesion molecule-1 expressed by bone marrow stromal cells mediates the binding of hematopoietic progenitor cells. Blood 1992; 80: 388395.
  • 74
    Croker PR, Morris L, Gordon S. Novel cell surface adhesion receptors involved in interactions between stromal macrophages and haematopoietic cells. J Cell Sci Suppl 1988; 9: 185206.
  • 75
    Teixido J, Hemler ME, Greenberger J, et al. Role of beta 1 and beta 2 integrins in the adhesion of human CD34 high stem cells to bone marrow stroma. J Clin Invest 1992; 90: 358367.
  • 76
    Bhatia R, McGlave P, Verfaille C. Treatment of marrow stroma with interferon-alpha restores normal beta 1 integrin-dependent adhesion of chronic myelogenous leukemia hematopoietic progenitors. Role of MIP-1 alpha. J Clin Invest 1995; 96: 931939.
  • 77
    Levesque J, Haylock D, Simmons P. Cytokine regulation of proliferation and cell adhesion are correlated events in human CD34+ hematopoietic progenitors. Blood 1996; 88: 11681176.
  • 78
    Watt S, Williamson J, Genevier H, et al. The heparin binding PECAM-1 adhesion molecule is expressed by CD34+ hematopoietic precursor cells with early myeloid and B-lymphoid cell types. Blood 1993; 82: 26492663.
  • 79
    Leavesley D, Oliver J, Swart B, et al. Signals from platelet/endothelial cell adhesion molecule enhance the adhesive activity of very late antigen-4 integrin of human CD34+ hematopoietic progenitors. J Immunol 1994; 153: 46734683.
  • 80
    Grezesik W, Robey P. Bone matrix RGD glycoproteins: immunolocalization and interaction with primary human cells. J Bone Miner Res 1994; 9: 487497.
  • 81
    Golderberger A, Middleton PJ, Newman PJ. Changes in expression of the cell adhesion molecule PECAM-1 (CD31) during differentiation of human leukemic cell lines. Tissue Antigens 1994; 442: 8593.
  • 82
    Kurachi T, Morita I, Murota S. Involvement of adhesion molecules LFA-1 and ICAM-1 in osteoclast development. Biochim Biophys Acta 1993; 62: 8693.
  • 83
    Toksoz D, Zsebo KM, Smith KA, et al. Support of human hematopoiesis in long-term bone marrow cultures by murine stromal cells selectively expressing the membrane-bound and secreted forms of the human homolog of the steel gene product, stem cell factor. Proc Natl Acad Sci USA 1992; 89: 73507354.
  • 84
    Kurt-Jones EA, Beller DI, Mizel SB, et al. Identification of a membrane bound interleukin-1. Proc Natl Acad Sci USA 1985; 82: 12041208.
  • 85
    Stein J, Bortizllo GV, Rettenmier CV. Direct stimulation of cells expressing receptors for macrophage colony stimulating factor (CSF-1) by a plasma membrane bound precursor of human CSF-1. Blood 1990; 76: 13081314.
  • 86
    Gordon MY, Ford AM, Greaves MF. The hematopoietic microenvironment: functional basis of blood cell development. In: LongMW, WichaMS, eds. Interactions of Hematopoietic Progenitor Cells With Extracellular Matrix. Baltimore, MD: Johns Hopkins University Press, 1993: 152174
  • 87
    Fava RA, McClure DB. Fibronectin-associated transforming growth factor. J Cell Physiol 1987; 131: 184189.
  • 88
    Hardy C, Minguell J. Modulation of the adhesion of hemopoietic progenitor cells to the RGD site of fibronectin by interleukin 3. J Cell Physiol 1995; 164: 315323.
  • 89
    Saeland S, Duvert V, Cux C, et al. Distribution of surface-membrane molecules on bone marrow and cord blood CD34+ hematopoietic cells. J Exp Med 1992; 20: 2433.
  • 90
    Reuss-Bort MA, Bugring HJ, Klein G, et al. Adhesion molecules on CD34+ hematopoietic cells in normal human bone marrow and leukemia. Ann Hematol 1992; 65: 169174.
  • 91
    Liesveld JL, Winsow JM, Ferdiani KE, et al. Expression of integrins and examination of their adhesive function in normal and leukemic hematopoietic cells. Blood 1993; 81: 112121.
  • 92
    Kerst JM, Sanders JB, Slaper-Cortenback IC, et al. Alpha 4 beta 1 and alpha 5 beta 1 are differentially expressed during myelopoiesis and mediate the adherence of human CD34+ cells to fibronectin in an activation-dependent way. Blood 1993; 81: 344351.
  • 93
    Lund-Johansen F, Terstappen WMM. Differential surface expression of cell adhesion molecules during granulocyte maturation. J Leuk Biol 1993; 54: 4755.
  • 94
    Siczkowski M, Clarke D, Gordon MY. Binding of primitive hematopoietic progenitor cells to marrow stromal cells involves heparin sulfate. Blood 1992; 80: 912919.
  • 95
    Verfaille CM, McCarthy JB, McGlave PB. Mechanisms underlying abnormal trafficking of malignant progenitors in chronic myelogenous leukemia. Decreased adhesion to stroma and fibronectin but increased adhesion to the basement membrane components of laminin and collagen type IV. J Clin Invest 1992; 90: 12321241.
  • 96
    Cavenagh J, Gordon-Smith E, Gordon M. The binding of acute myeloid leukemia blasts to human endothelium. Leuk Lymphoma 1994; 16: 1929.
  • 97
    Bendall L, Kortlepel K, Gottlieb D. Human acute myeloid leukemia cells bind to bone marrow stromal cells via a combination of beta-1 and beta-2 integrin mechanisms. Blood 1993; 82: 31253132.
  • 98
    Dowding C, Guo AP, Osterholz J, et al. Interferon-alpha overrides the deficient adhesion of chronic myeloid leukemia primitive progenitor cells to bone marrow stromal cells. Blood 1991; 78: 499505.
  • 99
    Hultenby K, Reinholdt F, Heinegard D. Distribution of integrin subunits on rat metaphyseal osteoclasts and osteoblasts. Eur J Cell Biol 1993; 62: 8693.
  • 100
    Tanaka Y, Morimoto I, Nakao Y, et al. Osteoblasts are regulated by intercellular adhesion through ICAM-1 and VCAM-1. J Bone Miner Res 1995; 10: 14621469.
  • 101
    Hughes D, Salter D, Dedhar S, et al. Integrin expression in human bone. J Bone Miner Res 1993; 8: 527533.
  • 102
    Clover J, Dodds R, Gowen M. Integrin subunit expression by human osteoblasts and osteoclasts in situ and in culture. J Cell Sci 1992; 103: 267271.
  • 103
    Duong L, Tanaka H, Rodan G. VCAM-1 involvement in osteoblast-osteoclast interactions during osteoclast differentiation. J Bone Miner Res 1995; 9 (suppl):S131
  • 104
    Horton M, Townsend P, Nesbitt S. Principles of bone biology. In: BilezikainJ, RaiszL, RodanG, eds. Cell Attachment Molecules In Bone. New York: Academic Press, 1996: 217230
  • 105
    Calvalho R, Bumann A, Schwarzer C, et al. A molecular mechanism of integrin regulation from bone cells stimulated by orthodontic forces. Eur J Orthodontics 1996; 18: 227235.
  • 106
    Glowacki J, Rey C, Glimcher M, et al. A role for osteocalcin in osteoclast differentiation. J Cell Biochem 1991; 45: 292302.
  • 107
    Fedarko N, Robey P, Vetter U. Extracellular matrix stoichiometry in osteoblasts from patients with osteogenesis imperfecta. J Bone Miner Res 1995; 10: 11221129.
  • 108
    Taichman RS, Emerson SG. Human osteosarcoma cell lines MG-63 and SaOS-2 produce G-CSF and GM-CSF: identification and partial characterization of cell-associated isoforms. Exp Hematol 1996; 24: 509517.
  • 109
    Xuan J-W, Hota C, Shigeyama Y, et al. Site-directed mutagenesis of the arginine-glycine-aspartic acid sequence in osteopontin destroys cell adhesion and migration functions. J Biol Chem 1994; 56: 111.
  • 110
    vanDijk S, D'Errico J, Somerman MJ, et al. Evidence that non-RGD domain in rat osteopontin is involved in cell attachment. J Bone Miner Res 1993; 81: 499505.
  • 111
    Shigeyama Y, Grove TK, Strayhorn C, et al. Expression of adhesion molecules during tooth resorption in feline teeth: a model system for an aggressive osteoclastic activity. J Periodontal Res 1996; 31: 369372.
  • 112
    Taichman RS, Reilly MJ, Emerson SG. Synthesis of TGF-Beta by human osteosarcomas inhibits the formation of hematopoietic colonies derived from human CD34+ bone marrow cells. Bone. 1997: 21; 353361.
  • 113
    Robey PG, Termine JD. Human bone cells in vitro. Calcif Tissue Int 1985; 37: 453460.
  • 114
    Billiau A, Edy VG, Heremans H, et al. Human interferon: mass production in a newly established cell line, MG-63. Antimicrob Agents Chemother 1977; 12: 1115.
  • 115
    Harris SA, Tau KR, Enger RJ, et al. Estrogen response in the hFOB 1.19 human fetal osteoblastic cell line stably tranfected with the human estrogen receptor. J Cell Biochem 1995; 59: 193201.
  • 116
    McAllister RM, Filbert JE, Nicolson MO, et al. Transformation and production of human osteosarcoma cells by a feline sarcoma virus. Nat New Biol 1971; 230: 279282.
  • 117
    Beresford JN, Joyner CJ, Devlin C, et al. The effects of dexamethasone and 1,25-dihydroxyvitamin D3 on osteogenic differentiation of human marrow stromal cells in vitro. Arch Oral Biol 1994; 39: 941947.
  • 118
    Rodan SB, Imai Y, Thiede MA, et al. Characterization of a human osteosarcoma cell line (Saos-2) with osteoblastic features. Cancer Res 1997; 47: 49614966.
  • 119
    Raile K, Hoflich A, Kessler U, et al. Human osteosarcoma (U-2 OS) cells express both insulin-like growth factor-I (IGF-I) receptors and insulin-like growth factor-II/mannose-6-phosphate (IGF-II/MGP) receptors and synthesize IGF-II: autocrine growth stimulation by IGF-II via the IGF-I receptor. J Cell Physiol 1994; 159: 531541.