SEARCH

SEARCH BY CITATION

References

  • 1
    Fauci AS, Mavilio D, Kottilil S. NK cells in HIV infection: Paradigm for protection or targets for ambush. Nat Rev 2005;5:835843.
  • 2
    Iannello A, Boulassel MR, Samarani S et al. Dynamics and consequences of IL-21 production in HIV-infected individuals: A longitudinal and cross-sectional study. J Immunol 2010;184:114126.
  • 3
    Kiem HP, Jerome KR, Deeks SG et al. Hematopoietic-stem-cell-based gene therapy for HIV disease. Cell Stem Cell 2012;10:137147.
  • 4
    Hoxie JA, June CH. Novel cell and gene therapies for HIV. Cold Spring Harbor Persp Med2012;2:a007179.
  • 5
    Kitchen SG, Shimizu S, An DS. Stem cell-based anti-HIV gene therapy. Virology 2011;411:260272.
  • 6
    Anderson J, Akkina R. CXCR4 and CCR5 shRNA transgenic CD34+ cell derived macrophages are functionally normal and resist HIV-1 infection. Retroviology 2005;2:53.
  • 7
    Kim SS, Peer D, Kumar P et al. RNAi-mediated CCR5 silencing by LFA-1-targeted nanoparticles prevents HIV infection in BLT mice. Mol Ther 2010;18:370376.
  • 8
    Shimizu S, Hong P, Arumugam B et al. A highly efficient short hairpin RNA potently down-regulates CCR5 expression in systemic lymphoid organs in the hu-BLT mouse model. Blood 2010;115:15341544.
  • 9
    Holt N, Wang J, Kim K et al. Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 2010;28:839847.
  • 10
    Alter G, Altfeld M. NK cells in HIV-1 infection: Evidence for their role in the control of HIV-1 infection. J Intern Med 2009;265:2942.
  • 11
    Hutter G, Nowak D, Mossner M et al. Long-term control of HIV by CCR5 delta32/delta32 stem-cell transplantation. New England J Med 2009;360:692698.
  • 12
    Porter DL, Levine BL, Kalos M et al. Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. New England J Med 2011;365:725733.
  • 13
    Kalos M, Levine BL, Porter DL et al. T cells with chimeric antigen receptors have potent antitumor effects and can establish memory in patients with advanced leukemia. Sci Trans Med 2011;3:95ra73.
  • 14
    Brentjens RJ, Riviere I, Park JH et al. Safety and persistence of adoptively transferred autologous CD19-targeted T cells in patients with relapsed or chemotherapy refractory B-cell leukemias. Blood 2011;118:48174828.
  • 15
    Morgan RA, Dudley ME, Rosenberg SA. Adoptive cell therapy: Genetic modification to redirect effector cell specificity. Cancer J 2010;16:336341.
  • 16
    Cooper LJ, Kalos M, Lewinsohn DA et al. Transfer of specificity for human immunodeficiency virus type 1 into primary human T lymphocytes by introduction of T-cell receptor genes. J Virol 2000;74:82078212.
  • 17
    Joseph A, Zheng JH, Follenzi A et al. Lentiviral vectors encoding human immunodeficiency virus type 1 (HIV-1)-specific T-cell receptor genes efficiently convert peripheral blood CD8 T lymphocytes into cytotoxic T lymphocytes with potent in vitro and in vivo HIV-1-specific inhibitory activity. J Virol 2008;82:30783089.
  • 18
    Varela-Rohena A, Molloy PE, Dunn SM et al. Control of HIV-1 immune escape by CD8 T cells expressing enhanced T-cell receptor. Nat Med 2008;14:13901395.
  • 19
    Kitchen SG, Levin BR, Bristol G et al. In vivo suppression of HIV by antigen specific T cells derived from engineered hematopoietic stem cells. Plos Pathogens 2012;8:e1002649.
  • 20
    Luo XM, Maarschalk E, O'Connell RM et al. Engineering human hematopoietic stem/progenitor cells to produce a broadly neutralizing anti-HIV antibody after in vitro maturation to human B lymphocytes. Blood 2009;113:14221431.
  • 21
    Joseph A, Zheng JH, Chen K et al. Inhibition of in vivo HIV infection in humanized mice by gene therapy of human hematopoietic stem cells with a lentiviral vector encoding a broadly neutralizing anti-HIV antibody. J Virol 2010;84:66456653.
  • 22
    Kaufman DS. Toward clinical therapies using hematopoietic cells derived from human pluripotent stem cells. Blood 2009;114:35133523.
  • 23
    Vodyanik MA, Bork JA, Thomson JA et al. Human embryonic stem cell-derived CD34+ cells: Efficient production in the coculture with OP9 stromal cells and analysis of lymphohematopoietic potential. Blood 2005;105:617626.
  • 24
    Woll PS, Marcus R, Kaufman DS. NK Cells Derived from human embryonic stem cells demonstrate more effective in vivo clearance of xenografted human tumor cells compared to NK cells derived from cord blood. Blood 2007;110:Abstract 2745.
  • 25
    Anderson JS, Bandi S, Kaufman DS et al. Derivation of normal macrophages from human embryonic stem (hES) cells for applications in HIV gene therapy. Retrovirology 2006;3:24.
  • 26
    Kennedy M, Awong G, Sturgeon CM et al. T lymphocyte potential marks the emergence of definitive hematopoietic progenitors in human pluripotent stem cell differentiation cultures. Cell Reports 2012;2:17221735.
  • 27
    Vizcardo R, Masuda K, Yamada D et al. Regeneration of human tumor antigen-specific T cells from iPSCs derived from mature CD8(+) T cells. Cell Stem Cell 2013;12:3136.
  • 28
    Nishimura T, Kaneko S, Kawana-Tachikawa A et al. Generation of rejuvenated antigen-specific T cells by reprogramming to pluripotency and redifferentiation. Cell Stem Cell 2013;12:114126.
  • 29
    Slukvin II, Vodyanik MA, Thomson JA et al. Directed differentiation of human embryonic stem cells into functional dendritic cells through the myeloid pathway. J Immunol 2006;176:29242932.
  • 30
    Bandi S, Akkina R. Human embryonic stem cell (hES) derived dendritic cells are functionally normal and are susceptible to HIV-1 infection. Aids Res Ther 2008;5:1.
  • 31
    Ni Z, Knorr DA, Clouser CL et al. Human pluripotent stem cells produce natural killer cells that mediate anti-HIV-1 activity utilizing diverse cellular mechanisms. J Virol 2011;85:4350.
  • 32
    Caligiuri MA. Human natural killer cells. Blood 2008;112:461469.
  • 33
    Iannello A, Debbeche O, Samarani S et al. Antiviral NK cell responses in HIV infection: I. NK cell receptor genes as determinants of HIV resistance and progression to AIDS. J Leuk Biol 2008;84:126.
  • 34
    Knorr DA, Ni Z, Hermanson D et al. Clinical-scale derivation of natural killer cells from human pluripotent stem cells for cancer therapy. Stem Cells Trans Med 2013;2:274283.
  • 35
    Knorr DA, Kaufman DS. Pluripotent stem cell-derived natural killer cells for cancer therapy. Translational research. J Lab Clin Med 2010;156:147154.
  • 36
    Tran AC, Zhang D, Byrn R et al. Chimeric zeta-receptors direct human natural killer (NK) effector function to permit killing of NK-resistant tumor cells and HIV-infected T lymphocytes. J Immunol 1995;155:10001009.
  • 37
    Deeks SG, Wagner B, Anton PA et al. A phase II randomized study of HIV-specific T-cell gene therapy in subjects with undetectable plasma viremia on combination antiretroviral therapy. Mol Ther 2002;5:788797.
  • 38
    Yang OO, Tran AC, Kalams SA et al. Lysis of HIV-1-infected cells and inhibition of viral replication by universal receptor T cells. Proc Natl Acad Sci U S A 1997;94:1147811483.
  • 39
    Mitsuyasu RT, Anton PA, Deeks SG et al. Prolonged survival and tissue trafficking following adoptive transfer of CD4zeta gene-modified autologous CD4(+) and CD8(+) T cells in human immunodeficiency virus-infected subjects. Blood 2000;96:785793.
  • 40
    Roberts MR, Qin L, Zhang D et al. Targeting of human immunodeficiency virus-infected cells by CD8+ T lymphocytes armed with universal T-cell receptors. Blood 1994;84:28782889.
  • 41
    Kaufman DS, Hanson ET, Lewis RL et al. Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad Sci U S A 2001;98:1071610721.
  • 42
    Wilber A, Linehan JL, Tian X et al. Efficient and stable transgene expression in human embryonic stem cells using transposon-mediated gene transfer. Stem Cells 2007;25:29192927.
  • 43
    Giudice A, Trounson A. Genetic modification of human embryonic stem cells for derivation of target cells. Cell Stem Cell 2008;2:422433.
  • 44
    Ng ES, Davis RP, Azzola L et al. Forced aggregation of defined numbers of human embryonic stem cells into embryoid bodies fosters robust, reproducible hematopoietic differentiation. Blood 2005;106:16011603.
  • 45
    Ng ES, Davis R, Stanley EG et al. A protocol describing the use of a recombinant protein-based, animal product-free medium (APEL) for human embryonic stem cell differentiation as spin embryoid bodies. Nat Prot 2008;3:768776.
  • 46
    Le Garff-Tavernier M, Beziat V, Decocq J et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 2010;9:527535.
  • 47
    Levy JA, Hoffman AD, Kramer SM et al. Isolation of lymphocytopathic retroviruses from San Francisco patients with AIDS. Science 1984;225:840842.
  • 48
    Mosier DE, Gulizia RJ, Baird SM et al. Transfer of a functional human immune system to mice with severe combined immunodeficiency. Nature 1988;335:256259.
  • 49
    Dapp MJ, Clouser CL, Patterson S et al. 5-Azacytidine can induce lethal mutagenesis in human immunodeficiency virus type 1. J Virol 2009;83:1195011958.
  • 50
    Brooks DG, Cohen MD, Jamieson BD et al. Rapid size dependent deletion of foreign gene sequences inserted into attenuated HIV-1 upon infection in vivo: Implications for vaccine development. Curr Hiv Res 2005;3:377392.
  • 51
    Woll PS, Grzywacz B, Tian X et al. Human embryonic stem cells differentiate into a homogeneous population of natural killer cells with potent in vivo antitumor activity. Blood 2009;113:60946101.
  • 52
    Berges BK, Akkina SR, Remling L et al. Humanized Rag2(-/-)gammac(-/-) (RAG-hu) mice can sustain long-term chronic HIV-1 infection lasting more than a year. Virology 2010;397:100103.
  • 53
    Neff CP, Kurisu T, Ndolo T et al. A topical microbicide gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. Plos One 2011;6:e20209.
  • 54
    Rouet F, Ekouevi DK, Chaix ML et al. Transfer and evaluation of an automated, low-cost real-time RT-PCR test for diagnosis and monitoring of human immunodeficiency virus type 1 infection in a West African resource-limited setting. J Clin Microbiol 2005;43:27092717.
  • 55
    Beziat V, Hervier B, Achour A et al. Human NKG2A overrides NKG2C effector functions to prevent autoreactivity of NK cells. Blood 2011;117:43944396.
  • 56
    Grzywacz B, Kataria N, Sikora M et al. Coordinated acquisition of inhibitory and activating receptors and functional properties by developing human natural killer cells. Blood 2006;108:38243833.
  • 57
    Freud AG, Yokohama A, Becknell B et al. Evidence for discrete stages of human natural killer cell differentiation in vivo. J Exp Med 2006;203:10331043.
  • 58
    Berkowitz RD, Alexander S, Bare C et al. CCR5- and CXCR4-utilizing strains of human immunodeficiency virus type 1 exhibit differential tropism and pathogenesis in vivo. J Virol 1998;72:1010810117.
  • 59
    Moretta A, Marcenaro E, Parolini S et al. NK cells at the interface between innate and adaptive immunity. Cell Death Differ 2008;15:226233.
  • 60
    Crotta S, Stilla A, Wack A et al. Inhibition of natural killer cells through engagement of CD81 by the major hepatitis C virus envelope protein. J Exp Med 2002;195:3541.
  • 61
    Gervaix A, West D, Leoni LM et al. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc Natl Acad Sci U S A 1997;94:46534658.
  • 62
    Alter G, Martin MP, Teigen N et al. Differential natural killer cell-mediated inhibition of HIV-1 replication based on distinct KIR/HLA subtypes. J Exp Med 2007;204:30273036.
  • 63
    Carlsten M, Bjorkstrom NK, Norell H et al. DNAX accessory molecule-1 mediated recognition of freshly isolated ovarian carcinoma by resting natural killer cells. Cancer Res 2007;67:13171325.
  • 64
    Beziat V, Descours B, Parizot C et al. NK cell terminal differentiation: Correlated stepwise decrease of NKG2A and acquisition of KIRs. Plos One 2010;5:e11966.
  • 65
    Neff CP, Zhou J, Remling L et al. An aptamer-siRNA chimera suppresses HIV-1 viral loads and protects from helper CD4(+) T cell decline in humanized mice. Sci Trans Med 2011;3:66ra66.
  • 66
    Carrington M, Alter G. Innate immune control of HIV. Cold Spring Harbor Perspectves Med 2012;2:a007070.
  • 67
    Beziat V, Traherne JA, Liu LL et al. Influence of KIR gene copy number on natural killer cell education. Blood 2013;121:47034707.
  • 68
    Melki MT, Saidi H, Dufour A et al. Escape of HIV-1-infected dendritic cells from TRAIL-mediated NK cell cytotoxicity during NK-DC cross-talk–a pivotal role of HMGB1. Plos Pathogens 2010;6:e1000862.
  • 69
    Beziat V, Nguyen S, Lapusan S et al. Fully functional NK cells after unrelated cord blood transplantation. Leukemia 2009;23:721728.
  • 70
    Hervier B, Beziat V, Haroche J et al. Phenotype and function of natural killer cells in systemic lupus erythematosus: Excess interferon-gamma production in patients with active disease. Arthritis Rheumatism 2011;63:16981706.
  • 71
    Beziat V, Liu LL, Malmberg JA et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood 2013;121:26782688.
  • 72
    Burton DR, Poignard P, Stanfield RL et al. Broadly neutralizing antibodies present new prospects to counter highly antigenically diverse viruses. Science 2012;337:183186.
  • 73
    Bernstein HB, Wang G, Plasterer MC et al. CD4+ NK cells can be productively infected with HIV, leading to downregulation of CD4 expression and changes in function. Virology 2009;387:5966.
  • 74
    Nguyen S, Beziat V, Roos-Weil D et al. Role of natural killer cells in hematopoietic stem cell transplantation: Myth or reality? J Innate Immunity 2011;3:383394.