SEARCH

SEARCH BY CITATION

References

  • 1
    Louis DN, Ohgaki H, Wiestler OD et al. The 2007 WHO classification of tumours of the central nervous system. Acta Neuropathol 2007;114:97109.
  • 2
    Hadjipanayis CG, Van Meir EG. Tumor initiating cells in malignant gliomas: biology and implications for therapy. J Mol Med 2009;87:363374.
  • 3
    Lagasse E, Shizuru JA, Uchida N et al. Toward regenerative medicine. Immunity 2001;14:425436.
  • 4
    A. J. Friedenstein RKC, K. S. Lalykina. The development of fibroblast colonies in monolayer cultures of guinea-pic bone marrow and spleen cells. Cell Tissue Kinet 1970;3:393403.
  • 5
    Dominici M, Le Blanc K, Mueller I et al. Minimal criteria for defining multipotent mesenchymal stromal cells. The International Society for Cellular Therapy position statement. Cytotherapy 2006;8:315317.
  • 6
    Morikawa S, Mabuchi Y, Kubota Y et al. Prospective identification, isolation, and systemic transplantation of multipotent mesenchymal stem cells in murine bone marrow. J Exp Med 2009;206:24832496.
  • 7
    Taichman RS, Wang Z, Shiozawa Y et al. Prospective identification and skeletal localization of cells capable of multilineage differentiation in vivo. Stem Cells Dev 2010;19:15571570.
  • 8
    Phinney DG, Prockop DJ. Concise review: mesenchymal stem/multipotent stromal cells: the state of transdifferentiation and modes of tissue repair–current views. Stem Cells 2007;25:28962902.
  • 9
    Yoshida T, Matsuda Y, Naito Z et al. CD44 in human glioma correlates with histopathological grade and cell migration. Pathol Int 2012;62:463470.
  • 10
    Jijiwa M, Demir H, Gupta S et al. (2011) CD44v6 Regulates Growth of Brain Tumor Stem Cells Partially through the AKT-Mediated Pathway. PLoS ONE 2011;6(9).
  • 11
    Kijima N, Hosen N, Kagawa N et al. CD166/activated leukocyte cell adhesion molecule is expressed on glioblastoma progenitor cells and involved in the regulation of tumor cell invasion. Neuro Oncol 2012;14(10):125464.
  • 12
    Kang SG, Shinojima N, Hossain A et al. Isolation and perivascular localization of mesenchymal stem cells from mouse brain. Neurosurgery 2010;67:711720.
  • 13
    Nakamizo A, Marini F, Amano T et al. Human bone marrow-derived mesenchymal stem cells in the treatment of gliomas. Cancer Res 2005;65:33073318.
  • 14
    Bexell DGS, Tormin A, Darabi A et al. Bone marrow multipotent mesenchymal stroma cells act as pericyte-like migratory vehicles in experimental gliomas. Mol Ther 2009;17:183190.
  • 15
    Karnoub AE, Dash AB, Vo AP et al. Mesenchymal stem cells within tumour stroma promote breast cancer metastasis. Nature 2007;449:55763.
  • 16
    Houghton J, Stoicov C, Nomura S et al. Gastric cancer originating from bone marrow-derived cells. Science 2004;306:15681571.
  • 17
    Klopp AH, Gupta A, Spaeth E et al. Concise review: Dissecting a discrepancy in the literature: do mesenchymal stem cells support or suppress tumor growth? Stem Cells2011;29(1):119.
  • 18
    Phillips HS, Kharbanda S, Chen R et al. Molecular subclasses of high-grade glioma predict prognosis, delineate a pattern of disease progression, and resemble stages in neurogenesis. Cancer Cell 2006;9:157173.
  • 19
    Verhaak RG, Hoadley KA, Purdom E et al. Integrated genomic analysis identifies clinically relevant subtypes of glioblastoma characterized by abnormalities in PDGFRA, IDH1, EGFR, and NF1. Cancer Cell 2010;17:98110.
  • 20
    Debacq-Chainiaux F, Erusalimsky JD, Campisi J et al. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat Protoc 2006;4:17981806.
  • 21
    Murrell W, Palmero E, Bianco J et al. Expansion of multipotent stem cells from the adult human brain, Plos One 2013;8(8):e71334.
  • 22
    Zagzag D, Armirnovin R, Greco MA et al. Vascular apoptosis and evolution in gliomas precede neovascularization: a novel concept for glioma growth and angiogenesis. Lab Invest 2000;80:83749.
  • 23
    Lee J, S Kotliarova, Y Kotliarov, et al. Tumor stem cells derived from glioblastomas cultured in bFGF and EGF more closely mirror the phenotype and genotype of primary tumors than do serum-cultured cell lines. Cancer Cell 2006;9:391403.
  • 24
    Vik-Mo EO, Sandberg C, Olstorn H et al. Brain tumor stem cells maintain overall phenotype and tumorigenicity after in vitro culturing in serum-free conditions. Neuro Oncol 2010;12:122030.
  • 25
    S Pellegatta, P L Poliani, et al. Neurospheres enriched in cancer stem-like cells are highly effective in eliciting a dendritic cell-mediated immune response against malignant gliomas. Cancer Res 2006;66:21. 1024752.
  • 26
    Jung Y, Kim J, Shiozawa Y et al. Recruitment of mesenchymal stem cells into prostate tumours promotes metastasis. Nature Communications 2013;4:1795.
  • 27
    Newcomb EW, Zagzag D. The Murine GL261 glioma experimental model to assess novel brain tumor treatments. In: Van Meir EG (ed). Cancer Drug Discovery and Development. Humana Press: Atlanta, GA 2009; 227241.
  • 28
    Maes W, Van Gool SW. Experimental immunotherapy for malignant glioma: lessons from two decades of research in the GL261 model. Cancer Immunol Immunother 2011;60(2):15360.
  • 29
    Wu A, Oh S, Wiesner SM et al. Persistence of CD133+ cells in human and mouse glioma cell lines: detailed characterization of GL261 glioma cells with cancer stem cell-like properties. Stem Cells Dev 2008;17:173184.
  • 30
    Lottaz C, D Beier, K Meyer, et al. Transcriptional profiles of CD133+ and CD133-glioblastoma-derived cancer stem cell lines suggest different cells of origin. Cancer Res 2010;70:20302040.
  • 31
    Soda Y, Marumoto T, Friedmann-Morvinski D et al. Transdifferentiation of glioblastoma cells into vascular endothelial cells. Proc Natl Acad Sci U S A 2010;108:42744280.
  • 32
    Capes-Davis A, Theodosopoulos G, Atkin I, Drexler HG, Kohara A et al. Check your cultures! A list of cross-contaminated or misidentified cell lines. International Journal Of Cancer 2010;127:18.
  • 33
    Rappa G, Mercapide J, Anzanello F et al. Growth of cancer cell lines under stem cell-like conditions has the potential to unveil therapeutic targets. Exp Cell Res 2008;314:21102122.
  • 34
    Ho IA, Toh HC, Ng WH et al. Human bone marrow-derived mesenchymal stem cells suppress human glioma growth through inhibition of angiogenesis. Stem Cells 2013;31(1):14655.
  • 35
    Waterman RS, Henkle SL, Betancourt AM. Mesenchymal Stem Cell 1 (MSC1)-Based Therapy Attenuates Tumor Growth Whereas MSC2-Treatment Promotes Tumor Growth and Metastasis. Plos One 2012;7(9):e45590.
  • 36
    Nauta AJ, Fibbe WE. Immunomodulatory properties of mesenchymal stromal cells. Blood 2007;110:3499506.
  • 37
    Spaggiari GM, Capobianco A, Becchetti S et al. Mesenchymal stem cell-natural killer cell interactions: evidence that activated NK cells are capable of killing MSCs, whereas MSCs can inhibit IL-2-induced NK-cell proliferation. Blood 2006;107:148490.
  • 38
    Sotiropoulou PA, Perez SA, Gritzapis AD et al. Interactions between human mesenchymal stem cells and natural killer cells. Stem Cells 2006;24:7485.
  • 39
    Bartholomew A, Sturgeon C, Siatskas M et al. Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol 2002;30:428.
  • 40
    Di Nicola M, Carlo-Stella C, Magni M et al. Human bone marrow stromal cells suppress Tlymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli. Blood 2002;99:383843.
  • 41
    Potian JA, Aviv H, Ponzio NM et al. Veto-like activity of mesenchymal stem cells: functional discrimination between cellular responses to alloantigens and recall antigens. J Immunol 2003;171:342634.
  • 42
    Welm BE, Tepera SB, Venezia T et al. Sca-1(pos) cells in the mouse mammary gland represent an enriched progenitor cell population. Dev Biol 2002;245:4256.
  • 43
    Upadhyay G, Yin Y, Yuan H et al. Stem cell antigen-1 enhances tumorigenicity by disruption of growth differentiation factor-10 (GDF10)-dependent TGF-beta signaling. Proc Natl Acad Sci U S A 2011;108:78207825.
  • 44
    Batts TD, Machado HL, Zhang Y et al. Stem Cell Antigen-1 (Sca-1) Regulates Mammary Tumor Development and Cell Migration. Plos One 2011;6(11):e27841.
  • 45
    Ehtesham M, Min E, Issar NM et al. The role of the CXCR4 cell surface chemokine receptor in glioma biology. J Neurooncol 2013;14(10):1007/s11060013–1108-4.
  • 46
    Wang J, Gu Z, Ni P et al. NF-kappaB P50/P65 hetero-dimer mediates differential regulation of CD166/ALCAM expression via interaction with micoRNA-9 after serum deprivation, providing evidence for a novel negative auto-regulatory loop. Nucleic Acids Res 2011;39:64406455.
  • 47
    Tan X, Wang S, Yang B et al. (2012) The CREB-miR-9 Negative Feedback Minicircuitry Coordinates the Migration and Proliferation of Glioma Cells. Plos One 2012;7(11):e49570.
  • 48
    Meijer J, Ogink J, Kreike B et al. The CXCL16-CXCR6 chemokine axis in glial tumors. J Neuroimmunol 2013;260(1-2):4754.
  • 49
    Schraivogel D, Weinmann L, Beier D et al. CAMTA1 is a novel tumour suppressor regulated by miR-9/9* in glioblastoma stem cells. EMBO J 2011;30:43094322.
  • 50
    Kim SM, Kang SG, Park NR et al. Presence of glioma stroma mesenchymal stem cells in a murine orthotopic glioma model. Childs Nerv Sys 2011;27(6):91122.
  • 51
    Yu JM, ES Jun, YC Bae and JS Jung. Mesenchymal stem cells derived from human adipose tissues favor tumor cell growth in vivo. Stem Cells Dev 2008;17:463473.
  • 52
    Akimoto K, Kimura K, Nagano M et al. Umbilical Cord Blood-Derived Mesenchymal Stem Cells Inhibit, But Adipose Tissue-Derived Mesenchymal Stem Cells Promote, Glioblastoma Multiforme Proliferation. Stem Cells Dev 2013;22(9).
  • 53
    Machein MR, Renninger S, de Lima-Hahn E et al. Minor contribution of bone marrow-derived endothelial progenitors to the vascularization of murine gliomas. Brain Pathol 2003;13:58297.
  • 54
    Zhou YF, Bosch-Marce M, Okuyama H et al. Spontaneous transformation of cultured mouse bone marrow-derived stromal cells. Cancer Res 2006;66:1084910854.
  • 55
    Schichor C, Albrecht V, Korte B, Buchner A et al. Mesenchymal stem cells and glioma cells form a structural as well as a functional syncytium in vitro. Exp Neurol 2012;234(1):20819.
  • 56
    Mercapide J, Rappa G, Anzanello F et al. Primary gene-engineered neural stem/progenitor cells demonstrate tumor-selective migration and antitumor effects in glioma. Int J Cancer 2010;1:126(5):120615.
  • 57
    Goldenberg DM. Ü ber die Progression der Malignita ät: Eine Hypothese [on the progression of malignancy: a hypothesis]. Klin Wochenschr 1968;46:8989.
  • 58
    Goldenberg DM, Zagzag D, Heselmeyer-Haddad KM et al. Horizontal transmission and retention of malignancy, as well as functional human genes, after spontaneous fusion of human glioblastoma and hamster host cells in vivo. Int J Cancer 2012;131(1):4958.