• 1
    Borasio G, Miller R. Clinical characteristics and management of ALS. Semin Neurosci 2001;21:155166.
  • 2
    Ilieva H, Polymenidou M, Cleveland DW. Non-cell autonomous toxicity in neurodegenerative disorders: ALS and beyond. J Cell Biol 2009;187:761772.
  • 3
    Kabashi E, Valdmanis PN, Dion P et al. TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 2008;40:572574.
  • 4
    Rothstein JD. Current hypotheses for the underlying biology of amyotrophic lateral sclerosis. Ann Neurol 2009;65(suppl 1):S39.
  • 5
    Sreedharan J, Blair IP, Tripathi VB et al. TDP-43 mutations in familial and sporadic amyotrophic lateral sclerosis. Science 2008;319:16681672.
  • 6
    van Blitterswijk M, DeJesus-Hernandez M, Rademakers R. How do C9ORF72 repeat expansions cause amyotrophic lateral sclerosis and frontotemporal dementia: Can we learn from other noncoding repeat expansion disorders? Curr Opin Neurol 2012;25:689700.
  • 7
    Bruijn LI, Miller TM, Cleveland DW. Unraveling the mechanisms involved in motor neuron degeneration in ALS. Annu Rev Neurosci 2004;27:723749.
  • 8
    Gordon PH. Amyotrophic Lateral Sclerosis: An update for 2013 clinical features, pathophysiology, management and therapeutic trials. Aging Dis 2013;4:295310.
  • 9
    Cozzolino M, Pesaresi MG, Gerbino V et al. Amyotrophic lateral sclerosis: New insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 2012;17:12771330.
  • 10
    Pizzuti A, Petrucci S. Mitochondrial disfunction as a cause of ALS. Arch Ital Biol 2011;149:113119.
  • 11
    Polymenidou M, Lagier-Tourenne C, Hutt KR et al. Misregulated RNA processing in amyotrophic lateral sclerosis. Brain Res 2012;1462:315.
  • 12
    Ticozzi N, Ratti A, Silani V. Protein aggregation and defective RNA metabolism as mechanisms for motor neuron damage. CNS Neurol Disord Drug Targets 2010;9:285296.
  • 13
    Evans MC, Couch Y, Sibson N et al. Inflammation and neurovascular changes in amyotrophic lateral sclerosis. Mol Cell Neurosci 2013;53:3441.
  • 14
    Rizzo F, Riboldi G, Salani S et al. Cellular therapy to target neuroinflammation in amyotrophic lateral sclerosis. Cell Mol Life Sci 2013 [Epub ahead of print], DOI 10.1007/s00018-013-1480-4. (PMID 24100629).
  • 15
    Lee Y, Morrison BM, Li Y et al. Oligodendroglia metabolically support axons and contribute to neurodegeneration. Nature 2012;487:443448.
  • 16
    Boillee S, Vande Velde C, Cleveland DW. ALS: A disease of motor neurons and their nonneuronal neighbors. Neuron 2006;52:3959.
  • 17
    Lasiene J, Yamanaka K. Glial cells in amyotrophic lateral sclerosis. Neurol Res Int 2011;2011:718987.
  • 18
    Kang SH, Li Y, Fukaya M et al. Degeneration and impaired regeneration of gray matter oligodendrocytes in amyotrophic lateral sclerosis. Nat Neurosci 2013;16:571579.
  • 19
    Fischer LR, Culver DG, Tennant P et al. Amyotrophic lateral sclerosis is a distal axonopathy: Evidence in mice and man. Exp Neurol 2004;185:232240.
  • 20
    Fischer LR, Glass JD. Axonal degeneration in motor neuron disease. Neurodegener Dis 2007;4:431442.
  • 21
    Hefferan MP, Galik J, Kakinohana O et al. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation. PLoS One 2012;7:e42614.
  • 22
    Boulis NM, Federici T, Glass JD et al. Translational stem cell therapy for amyotrophic lateral sclerosis. Nat Rev Neurol 2011;8:172176.
  • 23
    Lunn JS, Sakowski SA, Federici T et al. Stem cell technology for the study and treatment of motor neuron diseases. Regen Med 2011;6:201213.
  • 24
    Minguell JJ, Allers C, Lasala GP. Mesenchymal stem cells and the treatment of conditions and diseases: The less glittering side of a conspicuous stem cell for basic research. Stem Cells Dev 2013;22:193203.
  • 25
    Lopez-Gonzalez R, Kunckles P, Velasco I. Transient recovery in a rat model of familial amyotrophic lateral sclerosis after transplantation of motor neurons derived from mouse embryonic stem cells. Cell Transplant 2009;18:11711181.
  • 26
    Yang YM, Gupta SK, Kim KJ et al. A small molecule screen in stem-cell-derived motor neurons identifies a kinase inhibitor as a candidate therapeutic for ALS. Cell Stem Cell 2013;12:713726.
  • 27
    Divya MS, Roshin GE, Divya TS et al. Umbilical cord blood-derived mesenchymal stem cells consist of a unique population of progenitors co-expressing mesenchymal stem cell and neuronal markers capable of instantaneous neuronal differentiation. Stem Cell Res Ther 2012;3:57.
  • 28
    Bigini P, Veglianese P, Andriolo G et al. Intracerebroventricular administration of human umbilical cord blood cells delays disease progression in two murine models of motor neuron degeneration. Rejuvenation Res 2011;14:623639.
  • 29
    Rizvanov AA, Guseva DS, Salafutdinov, II et al. Genetically modified human umbilical cord blood cells expressing vascular endothelial growth factor and fibroblast growth factor 2 differentiate into glial cells after transplantation into amyotrophic lateral sclerosis transgenic mice. Exp Biol Med (Maywood) 2011;236:9198.
  • 30
    Souayah N, Coakley KM, Chen R et al. Defective neuromuscular transmission in the SOD1 G93A transgenic mouse improves after administration of human umbilical cord blood cells. Stem Cell Rev 2012;8:224228.
  • 31
    Garbuzova-Davis S, Sanberg CD, Kuzmin-Nichols N et al. Human umbilical cord blood treatment in a mouse model of ALS: Optimization of cell dose. PLoS One 2008;3:e2494.
  • 32
    Garbuzova-Davis S, Willing AE, Zigova T et al. Intravenous administration of human umbilical cord blood cells in a mouse model of amyotrophic lateral sclerosis: Distribution, migration, and differentiation. J Hematother Stem Cell Res 2003;12:255270.
  • 33
    Knippenberg S, Thau N, Schwabe K et al. Intraspinal injection of human umbilical cord blood-derived cells is neuroprotective in a transgenic mouse model of amyotrophic lateral sclerosis. Neurodegener Dis 2012;9:107120.
  • 34
    Gonzalez-Garza MT, Martinez HR, Caro-Osorio E et al. Differentiation of CD133+ stem cells from amyotrophic lateral sclerosis patients into preneuron cells. Stem Cells Transl Med 2013;2:129135.
  • 35
    Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002;30:896904.
  • 36
    Singh SP, Tripathy NK, Nityanand S. Comparison of phenotypic markers and neural differentiation potential of multipotent adult progenitor cells and mesenchymal stem cells. World J Stem Cells 2013;5:5360.
  • 37
    Vercelli A, Mereuta OM, Garbossa D et al. Human mesenchymal stem cell transplantation extends survival, improves motor performance and decreases neuroinflammation in mouse model of amyotrophic lateral sclerosis. Neurobiol Dis 2008;31:395405.
  • 38
    Chan-II C, Young-Don L, Heejaung K et al. Neural Induction with Neurogenin 1 Enhances the Therapeutic Potential of Mesenchymal Stem Cells in an ALS Mouse Model. Cell Transplant 2013;22:855870.
  • 39
    Knippenberg S, Thau N, Dengler R et al. Intracerebroventricular injection of encapsulated human mesenchymal cells producing glucagon-like peptide 1 prolongs survival in a mouse model of ALS. PLoS One 2012;7:e36857.
  • 40
    Suzuki M, McHugh J, Tork C et al. Direct muscle delivery of GDNF with human mesenchymal stem cells improves motor neuron survival and function in a rat model of familial ALS. Mol Ther 2008;16:20022010.
  • 41
    Ferrero I, Mazzini L, Rustichelli D et al. Bone marrow mesenchymal stem cells from healthy donors and sporadic amyotrophic lateral sclerosis patients. Cell Transplant 2008;17:255266.
  • 42
    Cho GW, Noh MY, Kim HY et al. Bone marrow-derived stromal cells from amyotrophic lateral sclerosis patients have diminished stem cell capacity. Stem Cells Dev 2010;19:10351042.
  • 43
    Koh SH, Baik W, Noh MY et al. The functional deficiency of bone marrow mesenchymal stromal cells in ALS patients is proportional to disease progression rate. Exp Neurol 2012;233:472480.
  • 44
    Boucherie C, Caumont AS, Maloteaux JM et al. In vitro evidence for impaired neuroprotective capacities of adult mesenchymal stem cells derived from a rat model of familial amyotrophic lateral sclerosis (hSOD1(G93A)). Exp Neurol 2008;212:557561.
  • 45
    Choi MR, Kim HY, Park JY et al. Selection of optimal passage of bone marrow-derived mesenchymal stem cells for stem cell therapy in patients with amyotrophic lateral sclerosis. Neurosci Lett 2010;472:9498.
  • 46
    Chi L, Ke Y, Luo C et al. Motor neuron degeneration promotes neural progenitor cell proliferation, migration, and neurogenesis in the spinal cords of amyotrophic lateral sclerosis mice. Stem Cells 2006;24:3443.
  • 47
    Juan L, Dawei Z, Julie AD. Increased number and differentiation of neural precursor cells in the brainstem of superoxide dismutase 1(G93A) (G1H) transgenic mouse model of amyotrophic lateral sclerosis. Neurol Res 2007;29:204209.
  • 48
    Gelati M, Profico D, Projetti-Pensi M et al. Culturing and expansion of “clinical grade” precursors cells from the fetal human central nervous system. Methods Mol Biol 2013;1059:6577.
  • 49
    Guo X, Johe K, Molnar P et al. Characterization of a human fetal spinal cord stem cell line, NSI-566RSC, and its induction to functional motoneurons. J Tissue Eng Regen Med 2010;4:181193.
  • 50
    Xu L, Ryugo DK, Pongstaporn T et al. Human neural stem cell grafts in the spinal cord of SOD1 transgenic rats: Differentiation and structural integration into the segmental motor circuitry. J Comp Neurol 2009;514:297309.
  • 51
    Xu L, Yan J, Chen D et al. Human neural stem cell grafts ameliorate motor neuron disease in SOD-1 transgenic rats. Transplantation 2006;82:865875.
  • 52
    Yan J, Xu L, Welsh AM et al. Extensive neuronal differentiation of human neural stem cell grafts in adult rat spinal cord. PLoS Med 2007;4:e39.
  • 53
    Xu L, Shen P, Hazel T et al. Dual transplantation of human neural stem cells into cervical and lumbar cord ameliorates motor neuron disease in SOD1 transgenic rats. Neurosci Lett 2011;494:222226.
  • 54
    Hwang DH, Lee HJ, Park IH et al. Intrathecal transplantation of human neural stem cells overexpressing VEGF provide behavioral improvement, disease onset delay and survival extension in transgenic ALS mice. Gene Ther 2009;16:12341244.
  • 55
    Suzuki M, McHugh J, Tork C et al. GDNF secreting human neural progenitor cells protect dying motor neurons, but not their projection to muscle, in a rat model of familial ALS. PLoS One 2007;2:e689.
  • 56
    Xu L, Mahairaki V, Koliatsos VE. Host induction by transplanted neural stem cells in the spinal cord: Further evidence for an adult spinal cord neurogenic niche. Regen Med 2012;7:785797.
  • 57
    Canzi L, Castellaneta V, Navone S et al. Human skeletal muscle stem cell antiinflammatory activity ameliorates clinical outcome in amyotrophic lateral sclerosis models. Mol Med 2012;18:401411.
  • 58
    Lepore AC, Rauck B, Dejea C et al. Focal transplantation-based astrocyte replacement is neuroprotective in a model of motor neuron disease. Nat Neurosci 2008;11:12941301.
  • 59
    Li Y, Bao J, Khatibi NH et al. Olfactory ensheathing cell transplantation into spinal cord prolongs the survival of mutant SOD1(G93A) ALS rats through neuroprotection and remyelination. Anat Rec (Hoboken) 2011;294:847857.
  • 60
    Philips T, Bento-Abreu A, Nonneman A et al. Oligodendrocyte dysfunction in the pathogenesis of amyotrophic lateral sclerosis. Brain 2013;136:471482.
  • 61
    Meamar R, Nasr-Esfahani MH, Mousavi SA et al. Stem cell therapy in amyotrophic lateral sclerosis. J Clin Neurosci 2013;20:16591663.
  • 62
    Huang H, Chen L, Xi H et al. Fetal olfactory ensheathing cells transplantation in amyotrophic lateral sclerosis patients: A controlled pilot study. Clin Transplant 2008;22:710718.
  • 63
    Chen L, Chen D, Xi H et al. Olfactory ensheathing cell neurorestorotherapy for amyotrophic lateral sclerosis patients: Benefits from multiple transplantations. Cell Transplant 2012;21(suppl 1):S6577.
  • 64
    Cashman N, Tan LY, Krieger C et al. Pilot study of granulocyte colony stimulating factor (G-CSF)-mobilized peripheral blood stem cells in amyotrophic lateral sclerosis (ALS). Muscle Nerve 2008;37:620625.
  • 65
    Chio A, Mora G, La Bella V et al. Repeated courses of granulocyte colony-stimulating factor in amyotrophic lateral sclerosis: Clinical and biological results from a prospective multicenter study. Muscle Nerve 2011;43:189195.
  • 66
    Nefussy B, Artamonov I, Deutsch V et al. Recombinant human granulocyte-colony stimulating factor administration for treating amyotrophic lateral sclerosis: A pilot study. Amyotroph Lateral Scler 2010;11:187193.
  • 67
    Deda H, Inci MC, Kurekci AE et al. Treatment of amyotrophic lateral sclerosis patients by autologous bone marrow-derived hematopoietic stem cell transplantation: A 1-year follow-up. Cytotherapy 2009;11:1825.
  • 68
    Mazzini L, Mareschi K, Ferrero I et al. Stem cell treatment in amyotrophic lateral sclerosis. J Neurol Sci 2008;265:7883.
  • 69
    Mazzini L, Mareschi K, Ferrero I et al. Mesenchymal stromal cell transplantation in amyotrophic lateral sclerosis: A long-term safety study. Cytotherapy 2012;14:5660.
  • 70
    Mazzini L, Ferrero I, Luparello V et al. Mesenchymal stem cell transplantation in amyotrophic lateral sclerosis: A phase I clinical trial. Exp Neurol 2010;223:229237.
  • 71
    Blanquer M, Moraleda JM, Iniesta F et al. Neurotrophic bone marrow cellular nests prevent spinal motoneuron degeneration in amyotrophic lateral sclerosis patients: A pilot safety study. Stem Cells 2012;30:12771285.
  • 72
    Prabhakar S, Marwaha N, Lal V et al. Autologous bone marrow-derived stem cells in amyotrophic lateral sclerosis: A pilot study. Neurol India 2012;60:465469.
  • 73
    Karussis D, Karageorgiou C, Vaknin-Dembinsky A et al. Safety and immunological effects of mesenchymal stem cell transplantation in patients with multiple sclerosis and amyotrophic lateral sclerosis. Arch Neurol 2010;67:11871194.
  • 74
    Baek W, Kim YS, Koh SH et al. Stem cell transplantation into the intraventricular space via an Ommaya reservoir in a patient with amyotrophic lateral sclerosis. J Neurosurg Sci 2012;56:261263.
  • 75
    Martinez HR, Gonzalez-Garza MT, Moreno-Cuevas JE et al. Stem-cell transplantation into the frontal motor cortex in amyotrophic lateral sclerosis patients. Cytotherapy 2009;11:2634.
  • 76
    Martinez HR, Molina-Lopez JF, Alez-Garza MT et al. Stem cell transplantation in amyotrophic lateral sclerosis patients. Methodological approach, safety, and feasibility. Cell Transplant 2012;21:18991907.
  • 77
    Moviglia GA, Moviglia-Brandolino MT, Varela GS et al. Feasibility, safety, and preliminary proof of principles of autologous neural stem cell treatment combined with T-cell vaccination for ALS patients. Cell Transplant 2012;21(suppl 1):S5763.
  • 78
    Glass JD, Boulis NM, Johe K et al. Lumbar intraspinal injection of neural stem cells in patients with amyotrophic lateral sclerosis: Results of a phase I trial in 12 patients. Stem Cells 2012;30:11441151.
  • 79
    Riley J, Federici T, Polak M et al. Intraspinal stem cell transplantation in amyotrophic lateral sclerosis: A phase I safety trial, technical note, and lumbar safety outcomes. Neurosurgery 2012;71:405416.
  • 80
    Riley J, Glass J, Feldman EL et al. Intraspinal stem cell transplantation in ALS: A phase I trial, cervical microinjection and final surgical safety outcomes. Neurosurgery 2014;74:7787.
  • 81
    Huang H, Chen L, Wang H et al. Influence of patients' age on functional recovery after transplantation of olfactory ensheathing cells into injured spinal cord injury. Chin Med J (Engl) 2003;116:14881491.
  • 82
    Chen L, Huang H, Zhang J et al. Short-term outcome of olfactory ensheathing cells transplantation for treatment of amyotrophic lateral sclerosis. Zhongguo Xiu Fu Chong Jian Wai Ke Za Zhi 2007;21:961966.
  • 83
    Piepers S, van den Berg LH. No benefits from experimental treatment with olfactory ensheathing cells in patients with ALS. Amyotroph Lateral Scler 2010;11:328330.
  • 84
    Chew S, Khandji AG, Montes J et al. Olfactory ensheathing glia injections in Beijing: Misleading patients with ALS. Amyotroph Lateral Scler 2007;8:314316.
  • 85
    Giordana MT, Grifoni S, Votta B et al. Neuropathology of olfactory ensheathing cell transplantation into the brain of two amyotrophic lateral sclerosis (ALS) patients. Brain Pathol 2010;20:730737.
  • 86
    Raore B, Federici T, Taub J et al. Cervical multilevel intraspinal stem cell therapy: Assessment of surgical risks in Gottingen minipigs. Spine (Phila Pa 1976) 2011;36:E164171.
  • 87
    Riley J, Butler J, Park J et al. Targeted spinal cord therapeutics delivery: Stabilized platform and MER guidance validation. Stereotact Funct Neurosurg 2007;86:6774.
  • 88
    Riley J, Federici T, Park J et al. Cervical spinal cord therapeutics delivery: Preclinical safety validation of a stabilized microinjection platform. Neurosurgery 2009;65:754761; discussion 761-752.
  • 89
    Riley JP, Raore B, Taub JS et al. Platform and cannula design improvements for spinal cord therapeutics delivery. Neurosurgery 2011;69:147154.
  • 90
    Wang F, Dennis JE, Awadallah A et al. Transcriptional profiling of human mesenchymal stem cells transduced with reporter genes for imaging. Physiol Genomics 2009;37:2334.
  • 91
    Yaghoubi SS, Campbell DO, Radu CG et al. Positron emission tomography reporter genes and reporter probes: Gene and cell therapy applications. Theranostics 2012;2:374391.
  • 92
    Zhang SJ, Wu JC. Comparison of imaging techniques for tracking cardiac stem cell therapy. J Nucl Med 2007;48:19161919.
  • 93
    Lamanna JJ, Donnelly EM, Oshinski JN et al. 177 pre-clinical validation of superparamagnetic iron oxide nanoparticle-labeled neural stem cells for in vivo tracking and post-mortem identification in the spinal cord. Neurosurgery 2012;71:E569.
  • 94
    Neri M, Maderna C, Cavazzin C et al. Efficient in vitro labeling of human neural precursor cells with superparamagnetic iron oxide particles: Relevance for in vivo cell tracking. Stem Cells 2008;26:505516.
  • 95
    Hu SL, Zhang JQ, Hu X et al. In vitro labeling of human umbilical cord mesenchymal stem cells with superparamagnetic iron oxide nanoparticles. J Cell Biochem 2009;108:529535.
  • 96
    Hefferan MP, Johe K, Feldman EL et al. Optimization of immunosuppressive therapy for spinal grafting of human spinal stem cells in a rat model of ALS. Cell Transplant 2011;20:11531161.
  • 97
    Gladman M, Cudkowicz M, Zinman L. Enhancing clinical trials in neurodegenerative disorders: Lessons from amyotrophic lateral sclerosis. Curr Opin Neurol 2012;25:735742.
  • 98
    Healy BC, Schoenfeld D. Comparison of analysis approaches for phase III clinical trials in amyotrophic lateral sclerosis. Muscle Nerve 2012;46:506511.
  • 99
    Dimos JT, Rodolfa KT, Niakan KK et al. Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 2008;321:12181221.
  • 100
    Egawa N, Kitaoka S, Tsukita K et al. Drug screening for ALS using patient-specific induced pluripotent stem cells. Sci Transl Med 2012;4:145ra104.
  • 101
    Luo Y, Fan Y, Chen X et al. Generation of induced pluripotent stem cells from asian patients with chronic neurodegenerative diseases. J Reprod Dev 2012;58:515521.
  • 102
    Yamanaka S. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. Cell Prolif 2008;41(suppl 1):5156.
  • 103
    Hou P, Li Y, Zhang X et al. Pluripotent stem cells induced from mouse somatic cells by small-molecule compounds. Science 2013;341:651654.
  • 104
    Cho HJ, Lee CS, Kwon YW et al. Induction of pluripotent stem cells from adult somatic cells by protein-based reprogramming without genetic manipulation. Blood 2010;116:386395.
  • 105
    Yakubov E, Rechavi G, Rozenblatt S et al. Reprogramming of human fibroblasts to pluripotent stem cells using mRNA of four transcription factors. Biochem Biophys Res Commun 2010;394:189193.
  • 106
    Yamanaka S, Blau HM. Nuclear reprogramming to a pluripotent state by three approaches. Nature 2010;465:704712.
  • 107
    O'Doherty R, Greiser U, Wang W. Nonviral methods for inducing pluripotency to cells. Biomed Res Int 2013;2013:705902.
  • 108
    Lunn JS, Hefferan MP, Marsala M et al. Stem cells: Comprehensive treatments for amyotrophic lateral sclerosis in conjunction with growth factor delivery. Growth Factors 2009;27:133140.
  • 109
    Suzuki M, Svendsen CN. Combining growth factor and stem cell therapy for amyotrophic lateral sclerosis. Trends Neurosci 2008;31:192198.