• Embryonic stem cell;
  • Development;
  • Mesoderm;
  • Cardiac progenitor cell;
  • Cardiomyocyte;
  • Cardiac differentiation;
  • In vitro screening;
  • Insulin;
  • Insulin-like growth factor;
  • Akt


A thorough understanding of the developmental signals that direct pluripotent stem cells (PSCs) toward a cardiac fate is essential for translational applications in disease modeling and therapy. We screened a panel of 44 cytokines/signaling molecules for their ability to enhance Nkx2.5+ cardiac progenitor cell (CPC) formation during in vitro embryonic stem cell (ESC) differentiation. Treatment of murine ESCs with insulin or insulin-like growth factors (IGF1/2) during early differentiation increased mesodermal cell proliferation and, consequently, CPC formation. Furthermore, we show that downstream mediators of IGF signaling (e.g., phospho-Akt and mTOR) are required for this effect. These data support a novel role for IGF family ligands to expand the developing mesoderm and promote cardiac differentiation. Insulin or IGF treatment could provide an effective strategy to increase the PSC-based generation of CPCs and cardiomyocytes for applications in regenerative medicine. Stem Cells 2014;32:1493–1502