SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Tavazoie M, Van der Veken L, Silva-Vargas V et al. A specialized vascular niche for adult neural stem cells. Cell Stem Cell 2008; 3: 279288.
  • 2
    Kim K, Lee KM, Han DJ et al. Adult stem cell-like tubular cells reside in the corticomedullary junction of the kidney. Int J Clin Exp Pathol 2008; 1: 232241.
  • 3
    Roh JK, Jung KH, Chu K. Adult stem cell transplantation in stroke: its limitations and prospects. Curr Stem Cell Res Ther 2008; 3: 185196.
  • 4
    Sotiropoulou PA, Candi A, Blanpain C. The majority of multipotent epidermal stem cells do not protect their genome by asymmetrical chromosome segregation. Stem Cells 2008; 26: 29642973.
  • 5
    Müller FJ, Laurent LC, Kostka D et al. Regulatory networks define phenotypic classes of human stem cell lines. Nature 2008; 455: 401405.
  • 6
    Loebinger MR, Sage EK, Janes SM. Mesenchymal stem cells as vectors for lung disease. Proc Am Thorac Soc 2008; 5: 711716.
  • 7
    Schermer A, Galvin S, Sun TT. Differentiation-related expression of a major 64K corneal keratin in vivo and in culture suggests limbal location of corneal epithelial stem cells. J Cell Biol 1986; 103: 4962.
  • 8
    Tseng SC. Concept and application of limbal stem cells. Eye 1989; 3: 141157.
  • 9
    Thoft RA, Wiley LA, Sundarraj N. The multipotential cells of the limbus. Eye 1989; 3: 109113.
  • 10
    Majo F, Rochat A, Nicolas M et al. Oligopotent stem cells are distributed throughout the mammalian ocular surface. Nature 2008; 456: 250255.
  • 11
    Blau HM, Brazelton TR, Weimann JM. The evolving concept of a stem cell: entity or function? Cell 2001; 105: 829841.
  • 12
    Lavker RM, Sun TT. Epidermal stem cells: properties, markers, and location. Proc Natl Acad Sci USA 2000; 97: 1347313475.
  • 13
    Schlötzer-Schrehardt U, Kruse FE. Identification and characterization of limbal stem cells. Exp Eye Res 2005; 81: 247264.
  • 14
    Chee KY, Kicic A, Wiffen SJ. Limbal stem cells: the search for a marker. Clin Experiment Ophthalmol 2006; 34: 6473.
  • 15
    dePaiva CS, Chen Z, Corrales RM et al. ABCG2 transporter identifies a population of clonogenic human limbal epithelial cells. Stem Cells 2005; 23: 6373.
  • 16
    Chen Z, Howard EW, Stephen C et al. Gap Junction protein connexin 43 serves as a negative marker for a stem cell-containing population of human limbal epithelial cells. Stem Cells 2006; 24: 12651273.
  • 17
    Pellegrini G, Dellambra E, Golisano O et al. P63 identifies keratinocyte stem cells. Proc Natl Acad Sci USA 2001; 98: 31563161.
  • 18
    Sun TT, Lavker RM. Corneal epithelial stem cells: Past, present, and future. J Investig Dermatol Symp Proc 2004; 9: 202207.
  • 19
    Qi H, Li DQ, Shine HD et al. Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Exp Eye Res 2008; 86: 3440.
  • 20
    Hong Qi, Eliseu Yung Chuang, Kyung-Chul Yoon et al. Patterned expression of neurotrophic factors and receptors in human limbal and corneal regions. Mol Vis 2007; 13: 19341941.
  • 21
    Du Y, Funderburgh ML, Mann MM et al. Multipotent stem cells in human corneal stroma. Stem Cells 2005; 23: 12661275.
  • 22
    Chen Z, Cintia SP, Luo L et al. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004; 22: 355366.
  • 23
    Yoneda Y. Nucleocytoplasmic protein traffic and its significance to cell function. Genes Cells 2000; 5: 777787.
  • 24
    Mingot JM, Kostka S, Kraft R et al. Importin 13: a novel mediator of nuclear import and export. EMBO J 2001; 20: 36853694.
  • 25
    Kim HS, Jun S, X, de Paiva CS et al. Phenotypic characterization of human corneal epithelial cells expanded ex vivo from limbal explant and single cell culture. Exp Eye Res 2004; 79: 4149.
  • 26
    Tseng SC, Kruse FE, Merritt J et al. Comparison between serum-free and fibroblast-cocultured single-cell clonal culture systems: evidence showing that epithelial antiapoptotic activity is present in 3T3 fibroblast-conditioned media. Curr Eye Res 1996; 15: 973984.
  • 27
    Li DQ, Chen Z, Song XJ et al. Partial enrichment of a population of human limbal epithelial cells with putative stem cell properties based on collagen type IV adhesiveness. Exp Eye Res 2005; 80: 581590.
  • 28
    Kawakita T, Shimmura S, Hornia A et al. Stratified epithelial sheets engineered from a single adult murine corneal/limbal progenitor cell. J Cell Mol Med 2008; 12: 13031316.
  • 29
    Ploski JE, Shamsher MK, Radu A. Paired-type homeodomain transcription factors are imported into the nucleus by karyopherin 13. Mol Cell Biol 2004; 24: 48244834.
  • 30
    Tao T, Lan J, Lukacs GL et al. Importin 13 regulates nuclear import of the glucocorticoid receptor in airway epithelial cells. Am J Respir Cell Mol Biol 2006; 35: 668680.
  • 31
    Tao T, Lan J, John F. Presley et al. Nucleocytoplasmic shuttling of Igl2 is developmentally regulated in fetal lung. Am J Respir Cell Mol Biol 2004; 30: 350359.
  • 32
    Yamaguchi YL, Tanaka SS, Yasuda K et al. Stage-specific importin 13 activity influences meiosis of germ cells in the mouse. Dev Biol 2006; 297: 350360.
  • 33
    Rondanino C, Bousser MT, Monsigny M et al. Sugar-dependent nuclear import of glycosylated proteins in living cells. Glycobiology 2003; 13: 509519.
  • 34
    Liang J, Ke G, You W et al. Interaction between importin 13 and myopodin suggests a nuclear import pathway for myopodin. Mol Cell Biochem 2008; 307: 93100.
  • 35
    Yamasaki H, Sekimoto T, Ohkubo T et al. Zinc finger domain of snail functions as a nuclear localization signal for importin-mediated nuclear import pathway. Genes Cells 2005; 10: 455464.
  • 36
    Shoubridge C, Cloosterman D, Parkinson-Lawerence E et al. Molecular pathology of expanded polyalanine tract mutations in the Aristaless-related homeobox gene. Genomics 2007; 90: 5971.
  • 37
    Quan Yu, Ji Z, Wang X et al. Evolutionary and transcriptional analysis of karyopherin beta superfamily proteins. Mol Cell Proteomics 2008; 7: 1254126.
  • 38
    Whitehurst AW, Robinson FL, Moore MS et al. The death effector domain protein PEA-15 prevents nuclear entry of ERK2 by inhibiting required interactions. J Bio Chem 2004; 279: 1284012847.
  • 39
    Ohba T, Seki T, Azuma Y et al. Premature chromatin condensation induced by loss of RCC1 is inhibited by GTP- and GTPγS-ran, but not GDP-ran. J Bio Chem 1996; 271: 1466514667.