SEARCH

SEARCH BY CITATION

Keywords:

  • Progenitor cells;
  • Neural differentiation;
  • Astrocytes;
  • MicroRNA;
  • Neural stem cell;
  • Notch;
  • Adult stem cells

Abstract

The mechanism by which addictive drugs such as morphine regulate adult neurogenesis remains elusive. We now demonstrate that morphine can regulate neurogenesis by control of miR-181a and subsequent hippocampal neural progenitor cell (hNPC) lineages. In the presence of morphine, hNPCs preferentially differentiated into astrocytes, an effect blocked by the specific μ-opioid receptor antagonist, Cys2-Tyr3-Orn5-Pen7-amide. This effect was mediated by the Prox1/Notch1 pathway as demonstrated by an increase in Notch1 level in the morphine- but not fentanyl-treated hNPCs and blocked by overexpression of Notch1 siRNA. Overexpression of Prox1 siRNA upregulated Notch1 level and potentiated the morphine-induced lineage changes. Prox1 transcript level was regulated by direct interaction between miR-181a and its 3′-UTR sequence. In vitro and in vivo treatment with morphine resulted in an increase in miR-181a level in hNPCs and mouse hippocampi, respectively. Overexpression of miR-181a mimics reduced Prox1 levels, increased Notch1 levels, and enhanced hNPCs differentiation into astrocytes. Meanwhile, overexpression of the miR-181a inhibitor raised Prox1 levels, decreased Notch1 levels, and subsequently blocked the morphine-induced lineage changes. Thus, by modulating Prox1/Notch1 activities via miR-181a, morphine influences the fate of differentiating hNPCs differentiation and therefore the ultimate quantities of mature neurons and astrocytes. Stem Cells 2014;32:2961–2972