SEARCH

SEARCH BY CITATION

REFERENCES

  • 1
    Lataillade JJ, Clay D, David C et al. Phenotypic and functional characteristics of CD34+ cells are related to their anatomical environment: Is their versatility a prerequisite for their bio-availability? J Leukoc Biol 2005; 77: 634643.
  • 2
    Zhou S, Schuetz JD, Bunting KD et al. The ABC transporter Bcrp1/ABCG2 is expressed in a wide variety of stem cells and is a molecular determinant of the side-population phenotype. Nat Med 2001; 7: 10281034.
  • 3
    Challen GA, Little MH. A side order of stem cells: The SP phenotype. Stem Cells 2006; 24: 312.
  • 4
    McDevitt CA, Collins RF, Conway M et al. Purification and 3D structural analysis of oligomeric human multidrug transporter ABCG2. Structure 2006; 14: 16231632.
  • 5
    Kobayashi I, Moritomo T, Ototake M et al. Isolation of side population cells from ginbuna carp (Carassius auratus langsdorfii) kidney hematopoietic tissues. Dev Comp Immunol 2007; 31: 696707.
  • 6
    Staud F, Pavek P. Breast cancer resistance protein (BCRP/ABCG2). Int J Biochem Cell Biol 2005; 37: 720725.
  • 7
    Johnnidis JB, Camargo FD. Isolation and functional characterization of side population stem cells. Methods Mol Biol 2008; 430: 183193.
  • 8
    Goodell MA. Multipotential stem cells and ‘side population’ cells. Cytotherapy 2002; 4: 507508.
  • 9
    Lin KK, Goodell MA. Purification of hematopoietic stem cells using the side population. Methods Enzymol 2006; 420: 255264.
  • 10
    Kim M, Turnquist H, Jackson J et al. The multidrug resistance transporter ABCG2 (breast cancer resistance protein 1) effluxes Hoechst 33342 and is overexpressed in hematopoietic stem cells. Clin Cancer Res 2002; 8: 2228.
  • 11
    Robinson SN, Seina SM, Gohr JC et al. Evidence for a qualitative hierarchy within the Hoechst-33342 ‘side population’ (SP) of murine bone marrow cells. Bone Marrow Transplant 2005; 35: 807818.
  • 12
    Scharenberg CW, Harkey MA, Torok-Storb B. The ABCG2 transporter is an efficient Hoechst 33342 efflux pump and is preferentially expressed by immature human hematopoietic progenitors. Blood 2002; 99: 507512.
  • 13
    Foster S, Winstead L, Fisher A et al. Specificity of the flow cytometric aldehyde dehydrogenase (ALDH) assay in hematopoietic progenitor cells and tumor cell lines [abstract]. Blood 2003; 102: 961a.
  • 14
    Chute JP, Muramoto GG, Whitesides J et al. Inhibition of aldehyde dehydrogenase and retinoid signaling induces the expansion of human hematopoietic stem cells. Proc Natl Acad Sci U S A 2006; 103: 1170711712.
  • 15
    Jones RJ, Barber JP, Vala MS et al. Assessment of aldehyde dehydrogenase in viable cells. Blood 1995; 85: 27422746.
  • 16
    Christ O, Lucke K, Imren S et al. Improved purification of hematopoietic stem cells based on their elevated aldehyde dehydrogenase activity. Haematologica 2007; 92: 11651172.
  • 17
    Armstrong L, Stojkovic M, Dimmick I et al. Phenotypic characterization of murine primitive hematopoietic progenitor cells isolated on basis of aldehyde dehydrogenase activity. Stem Cells 2004; 22: 11421151.
  • 18
    Storms RW, Green PD, Safford KM et al. Distinct hematopoietic progenitor compartments are delineated by the expression of aldehyde dehydrogenase and CD34. Blood 2005; 106: 95102.
  • 19
    Storms RW, Trujillo AP, Springer JB et al. Isolation of primitive human hematopoietic progenitors on the basis of aldehyde dehydrogenase activity. Proc Natl Acad Sci U S A 1999; 96: 91189123.
  • 20
    Kastan MB, Schlaffer E, Russo JE et al. Direct demonstration of elevated aldehyde dehydrogenase in human hematopoietic progenitor cells. Blood 1990; 75: 19471950.
  • 21
    Gentry T, Foster S, Winstead L et al. Simultaneous isolation of human BM hematopoietic, endothelial and mesenchymal progenitor cells by flow sorting based on aldehyde dehydrogenase activity: Implications for cell therapy. Cytotherapy 2007; 9: 259274.
  • 22
    Hess DA, Craft TP, Wirthlin L et al. Widespread nonhematopoietic tissue distribution by transplanted human progenitor cells with high aldehyde dehydrogenase activity. Stem Cells 2008; 26: 611620.
  • 23
    Hess DA, Meyerrose TE, Wirthlin L et al. Functional characterization of highly purified human hematopoietic repopulating cells isolated according to aldehyde dehydrogenase activity. Blood 2004; 104: 16481655.
  • 24
    Pearce DJ, Bonnet D. The combined use of Hoechst efflux ability and aldehyde dehydrogenase activity to identify murine and human hematopoietic stem cells. Exp Hematol 2007; 35: 14371446.
  • 25
    Goodell MA, Brose K, Paradis G et al. Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med 1996; 183: 17971806.
  • 26
    Goodell MA. Stem cell identification and sorting using the Hoechst 33342 side population (SP). Curr Protoc Cytom. Available at http://www.currentprotocols.com/protocol/cy0918. November 2005.
  • 27
    Montanaro F, Liadaki K, Schienda J et al. Demystifying SP cell purification: Viability, yield, and phenotype are defined by isolation parameters. Exp Cell Res 2004; 298: 144154.
  • 28
    Liadaki K, Kho AT, Sanoudou D et al. Side population cells isolated from different tissues share transcriptome signatures and express tissue-specific markers. Exp Cell Res 2005; 303: 360374.
  • 29
    Shapiro HM. Flow cytometric estimation of DNA and RNA content in intact cells stained with Hoechst 33342 and pyronin Y. Cytometry 1981; 2: 143150.
  • 30
    Saeed AI, Sharov V, White J et al. TM4: A free, open-source system for microarray data management and analysis. Biotechniques 2003; 34: 374378.
  • 31
    Huttmann A, Liu SL, Boyd AW et al. Functional heterogeneity within rhodamine123(lo) Hoechst33342(lo/sp) primitive hemopoietic stem cells revealed by pyronin Y. Exp Hematol 2001; 29: 11091116.
  • 32
    McKenzie JL, Gan OI, Doedens M et al. Reversible cell surface expression of CD38 on CD34-positive human hematopoietic repopulating cells. Exp Hematol 2007; 35: 14291436.
  • 33
    Naylor CS, Jaworska E, Branson K et al. Side population/ABCG2-positive cells represent a heterogeneous group of haemopoietic cells: Implications for the use of adult stem cells in transplantation and plasticity protocols. Bone Marrow Transplant 2005; 35: 353360.
  • 34
    Arai F, Hirao A, Suda T. Regulation of hematopoietic stem cells by the niche. Trends Cardiovasc Med 2005; 15: 7579.
  • 35
    Arai F, Hirao A, Ohmura M et al. Tie2/angiopoietin-1 signaling regulates hematopoietic stem cell quiescence in the bone marrow niche. Cell 2004; 118: 149161.
  • 36
    Gothot A, Pyatt R, McMahel J et al. Functional heterogeneity of human CD34(+) cells isolated in subcompartments of the G0/G1 phase of the cell cycle. Blood 1997; 90: 43844393.
  • 37
    Morita Y, Ema H, Yamazaki S et al. Non-side-population hematopoietic stem cells in mouse bone marrow. Blood 2006; 108: 28502856.
  • 38
    Hirao A, Arai F, Suda T. Regulation of cell cycle in hematopoietic stem cells by the niche. Cell Cycle 2004; 3: 14811483.
  • 39
    Das B, Tsuchida R, Malkin D et al. Hypoxia enhances tumor stemness by increasing the invasive and tumorigenic side population fraction. Stem Cells 2008; 26: 18181830.
  • 40
    Shibata F, Goto-Koshino Y, Morikawa Y et al. Roundabout 4 is expressed on hematopoietic stem cells and potentially involved in the niche-mediated regulation of the side population phenotype. Stem Cells 2009; 27: 183190.
  • 41
    Doyle LA, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP (ABCG2). Oncogene 2003; 22: 73407358.
  • 42
    Wu C, Alman BA. Side population cells in human cancers. Cancer Lett 2008; 268: 19.
  • 43
    Polgar O, Robey RW, Bates SE. ABCG2: Structure, function and role in drug response. Expert Opin Drug Metab Toxicol 2008; 4: 115.
  • 44
    Robey RW, Polgar O, Deeken J et al. ABCG2: Determining its relevance in clinical drug resistance. Cancer Metastasis Rev 2007; 26: 3957.
  • 45
    Ginestier C, Hur MH, Charafe-Jauffret E et al. ALDH1 is a marker of normal and malignant human mammary stem cells and a predictor of poor clinical outcome. Cell Stem Cell 2007; 1: 555567.