• 1
    Gordon JI, Hermiston ML. Differentiation and self-renewal in the mouse gastrointestinal epithelium. Curr Opin Cell Biol 1994; 6: 795803.
  • 2
    Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. V. Unitarian Theory of the origin of the four epithelial cell types. Am J Anatomy 1974; 141: 537561.
  • 3
    Cohn SM, Simon TC, Roth KA et al. Use of transgenic mice to map cis-acting elements in the intestinal fatty acid binding protein gene (Fabpi) that control its cell lineage-specific and regional patterns of expression along the duodenal-colonic and crypt-villus axes of the gut epithelium. J Cell Biol 1992; 119: 2744.
  • 4
    Schmidt GH, Wilkinson MM, Ponder BA. Cell migration pathway in the intestinal epithelium: An in situ marker system using mouse aggregation chimeras. Cell 1985; 40: 425429.
  • 5
    Winton DJ, Ponder BA. Stem-cell organization in mouse small intestine. Proc Biol Sci 1990; 241: 1318.
  • 6
    Potten CS, Loeffler M. A comprehensive model of the crypts of the small intestine of the mouse provides insight into the mechanisms of cell migration and the proliferation hierarchy. J Theor Biol 1987; 127: 381391.
  • 7
    Potten CS, Loeffler M. Stem cells: Attributes, cycles, spirals, pitfalls and uncertainties. Lessons for and from the Crypt. Development 1990; 110: 10011020.
  • 8
    Hauft SM, Kim SH, Schmidt GH et al. Expression of SV-40 T antigen in the small intestinal epithelium of transgenic mice results in proliferative changes in the crypt and reentry of villus-associated enterocytes into the cell cycle but has no apparent effect on cellular differentiation programs and does not cause neoplastic transformation. J Cell Biol 1992; 117: 825839.
  • 9
    Bjerknes M, Cheng H. The stem-cell zone of the small intestinal epithelium. IV. Effects of resecting 30% of the small intestine. Am J Anatomy 1981; 160: 93103.
  • 10
    Cheng H, Leblond CP. Origin, differentiation and renewal of the four main epithelial cell types in the mouse small intestine. I. Columnar cell. Am J Anatomy 1974; 141: 461479.
  • 11
    Bjerknes M, Cheng H. Clonal analysis of mouse intestinal epithelial progenitors. Gastroenterology 1999; 116: 714.
  • 12
    Cheshier SH, Morrison SJ, Liao X et al. In vivo proliferation and cell cycle kinetics of long-term self-renewing hematopoietic stem cells. Proc Natl Acad Sci USA 1999; 96: 31203125.
  • 13
    Cotsarelis G, Sun TT, Lavker RM. Label-retaining cells reside in the bulge area of pilosebaceous unit: Implications for follicular stem cells, hair cycle, and skin carcinogenesis. Cell 1990; 61: 13291337.
  • 14
    Zhang J, Niu C, Ye L et al. Identification of the haematopoietic stem cell niche and control of the niche size. Nature 2003; 425: 836841.
  • 15
    Potten CS, Owen G, Booth D. Intestinal stem cells protect their genome by selective segregation of template DNA strands. J Cell Sci 2002; 115: 23812388.
  • 16
    Marshman E, Booth C, Potten CS. The intestinal epithelial stem cell. Bioessays 2002; 24: 9198.
  • 17
    Barker N, van Es JH, Kuipers J et al. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 2007; 449: 10031007.
  • 18
    Lin PT, Gleeson JG, Corbo JC et al. DCAMKL1 encodes a protein kinase with homology to doublecortin that regulates microtubule polymerization. J Neurosci 2000; 20: 91529161.
  • 19
    May R, Riehl TE, Hunt C et al. Identification of a novel putative gastrointestinal stem cell and adenoma stem cell marker, doublecortin and CaM kinase-like-1, following radiation injury and in adenomatous polyposis coli/multiple intestinal neoplasia mice. Stem Cells 2008; 26: 630637.
  • 20
    Quante M, Wang TC. Inflammation and stem cells in gastrointestinal carcinogenesis. Physiology 2008; 23: 350359.
  • 21
    Samuel S, Walsh R, Webb J et al. Characterization of putative stem cells in isolated human colonic crypt epithelial cells and their interactions with myofibroblasts. Am J Physiol Cell Physiol 2009; 296: C296305.
  • 22
    Humphries A, Wright NA. Colonic crypt organization and tumorigenesis. Nature Rev 2008; 8: 415424.
  • 23
    Giannakis M, Stappenbeck TS, Mills JC et al. Molecular properties of adult mouse gastric and intestinal epithelial progenitors in their niches. J Biol Chem 2006; 281: 1129211300.
  • 24
    Giannakis M, Chen SL, Karam SM et al. Helicobacter pylori evolution during progression from chronic atrophic gastritis to gastric cancer and its impact on gastric stem cells. Proc Natl Acad Sci USA 2008; 105: 43584363.
  • 25
    Dekaney CM, Rodriguez JM, Graul MC et al. Isolation and characterization of a putative intestinal stem cell fraction from mouse jejunum. Gastroenterology 2005; 129: 15671580.
  • 26
    Grossmann J, Walther K, Artinger M et al. Progress on isolation and short-term ex-vivo culture of highly purified non-apoptotic human intestinal epithelial cells (IEC). Eur J Cell Biol 2003; 82: 262270.
  • 27
    Becker L, Huang Q, Mashimo H. Immunostaining of Lgr5, an intestinal stem cell marker, in normal and premalignant human gastrointestinal tissue. ScientificWorldJournal 2008; 8: 11681176.
  • 28
    McClanahan T, Koseoglu S, Smith K et al. Identification of overexpression of orphan G protein-coupled receptor GPR49 in human colon and ovarian primary tumors. Cancer Biol Ther 2006; 5: 419426.
  • 29
    Potten CS, Booth C, Pritchard DM. The intestinal epithelial stem cell: The mucosal governor. Int J Exp Pathol 1997; 78: 219243.
  • 30
    Frye M, Gardner C, Li ER et al. Evidence that Myc activation depletes the epidermal stem cell compartment by modulating adhesive interactions with the local microenvironment. Development 2003; 130: 27932808.
  • 31
    Potten CS, Taylor Y, Hendry JH. The doubling time of regenerating clonogenic cells in the crypts of the irradiated mouse small intestine. Int J Radiat Biol 1988; 54: 10411051.
  • 32
    Sossey-Alaoui K, Srivastava AK. DCAMKL1, a brain-specific transmembrane protein on 13q12.3 that is similar to doublecortin (DCX). Genomics 1999; 56: 121126.
  • 33
    Kim MH, Cierpicki T, Derewenda U et al. The DCX-domain tandems of doublecortin and doublecortin-like kinase. Nature Struct Biol 2003; 10: 324333.
  • 34
    Sureban SM, May R, Ramalingam S et al. Selective blockade of DCAMKL-1 results in tumor growth arrest by a Let-7a microRNA-dependent mechanism. Gastroenterology. 2009; 137: 649659.
  • 35
    Dontu G. In vitro propagation and transcriptional profiling of human mammary stem/progenitor cells. Genes Dev 2003; 17: 12531270.
  • 36
    Moll R, Divo M, Langbein L. The human keratins: Biology and pathology. Histochem Cell Biol 2008; 129: 705733.
  • 37
    Purkis PE, Steel JB, Mackenzie IC et al. Antibody markers of basal cells in complex epithelia. J Cell Sci 1990; 97( Pt 1): 3950.
  • 38
    Sureban SM, May R, George RJ et al. Knockdown of RNA Binding Protein Musashi-1 Leads to Tumor Regression In Vivo. Gastroenterology 2008; 134: 14481458. e1442.
  • 39
    Potten CS. Identification of a putative intestinal stem cell and early lineage marker; musashi-1. Differentiation 2003; 71: 2841.
  • 40
    Yang Q, Bermingham NA, Finegold MJ et al. Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 2001; 294: 21552158.
  • 41
    Shroyer NF, Wallis D, Venken KJ et al. Gfi1 functions downstream of Math1 to control intestinal secretory cell subtype allocation and differentiation. Genes Dev 2005; 19: 24122417.
  • 42
    Rubin DC, Swietlicki E, Roth KA et al. Use of fetal intestinal isografts from normal and transgenic mice to study the programming of positional information along the duodenal-to-colonic axis. J Biol Chem 1992; 267: 1512215133.
  • 43
    Crossman MW, Hauft SM, Gordon JI. The mouse ileal lipid-binding protein gene: a model for studying axial patterning during gut morphogenesis. J Cell Biol 1994; 126: 15471564.
  • 44
    Sangiorgi E, Capecchi MR. Bmi1 is expressed in vivo in intestinal stem cells. Nat Genet 2008; 40: 915920.