• 1
    Raine CS. The neuropathology of multiple sclerosis. In: RaineCS, McFarlandH, TourtellotteW, eds. Multiple sclerosis. London, UK: Chapman & Hall Med, 1997: 149172.
  • 2
    Brex PA, Ciccarelli O, O'Riordan JI et al. A longitudinal study of abnormalities on MRI and disability from multiple sclerosis. N Engl J Med 2002; 346: 158164.
  • 3
    Trapp BD, Peterson J, Ransohoff RM et al. Axonal transection in the lesions of multiple sclerosis. N Engl J Med 1998; 338: 278285.
  • 4
    Pluchino S, Quattrini A, Brambilla E et al. Injection of adult neurospheres induces recovery in a chronic model of multiple sclerosis. Nature 2003; 422: 688694.
  • 5
    Pluchino S, Zanotti L, Rossi B et al. Neurosphere-derived multipotent precursors promote long-lasting neuroprotection by an immunomodulatory mechanism. Nature 2005; 436: 266271.
  • 6
    Horwitz EM, Le Blanc K, Dominici M et al. Clarification of the nomenclature for MSC: the International Society for Cellular Therapy position statement. Cytotherapy 2005; 7: 393395.
  • 7
    Erices A, Conget P, Minguell JJ. Mesenchymal progenitor cells in human umbilical cord blood. Br J Haematol 2000; 109: 235242.
  • 8
    Jiang Y, Vaessen B, Lenvik T et al. Multipotent progenitor cells can be isolated from postnatal murine bone marrow, muscle, and brain. Exp Hematol 2002; 30: 896904.
  • 9
    Zuk PA, Zhu M, Mizuno H et al. Multilineage cells from human adipose tissue: implications for cell-based therapies. Tissue Eng 2001; 7: 211228.
  • 10
    Munoz JR, Stoutenger BR, Robinson AP et al. Human stem/progenitor cells from bone marrow promote neurogenesis of endogenous neural stem cells in the hippocampus of mice. Proc Natl Acad Sci USA 2005; 102: 1817118176.
  • 11
    Krampera M, Glennie S, Dyson J. Bone marrow mesenchymal stem cells inhibit the response of naive and memory antigen-specific T cells to their cognate peptide. Blood 2003; 101: 37223729.
  • 12
    Uccelli A, Moretta L, Pistoia V. Immunoregulatory function of mesenchymal stem cells. Eur J Immunol 2006; 36: 25662573.
  • 13
    Uccelli A, Moretta L, Pistoia V. Mesenchymal stem cells in health and disease. Nat Rev Immunol 2008; 8: 726736.
  • 14
    Cui L, Yin S, Liu W et al. Expanded adipose-derived stem cells suppress mixed lymphocyte reaction by secretion of prostaglandin E2. Tissue Eng 2007; 13: 11851195.
  • 15
    Zappia E, Casazza S, Pedemonte E et al. Mesenchymal stem cells ameliorate experimental autoimmune encephalomyelitis inducing T-cell anergy. Blood 2005; 106: 17551761.
  • 16
    Zhang J, Li Y, Chen J et al. Human bone marrow stromal cell treatment improves neurological functional recovery in EAE mice. Exp Neurol 2005; 195: 1626.
  • 17
    Gerdoni E, Gallo B, Casazza S et al. Mesenchymal stem cells effectively modulate pathogenic immune response in experimental autoimmune encephalomyelitis. Ann Neurol 2007; 61: 219227.
  • 18
    Kassis I, Grigoriadis N, Gowda-Kurkalli B Et al. Neuroprotection and immunomodulation with mesenchymal stem cells in chronic experimental autoimmune encephalomyelitis. Arch Neurol 2008; 65: 753761.
  • 19
    Bai L, Lennon DP, Eaton V et al. Human bone marrow-derived mesenchymal stem cells induce Th2-polarized immune response and promote endogenous repair in animal models of multiple sclerosis. Glia 2009; 57: 11921203.
  • 20
    Rafei M, Campeau PM, Aguilar-Mahecha A et al. Mesenchymal stromal cells ameliorate experimental autoimmune encephalomyelitis by inhibiting CD4 Th17 T cells in a CC chemokine ligand 2-dependent manner. J Immunol 2009; 182: 59946002.
  • 21
    De Ugarte DA, Alfonso Z, Zuk PA et al. Differential expression of stem cell mobilization-associated molecules on multi-lineage cells from adipose tissue and bone marrow. Immunol Lett 2003; 89: 267270.
  • 22
    Fraser JK, Wulur I, Alfonso Z et al. Fat tissue: an underappreciated source of stem cells for biotechnology. Trends Biotechnol 2006; 24: 150154.
  • 23
    Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther 2006; 6: 567578.
  • 24
    Puissant B, Barreau C, Bourin P et al. Immunomodulatory effects of human adipose tissue-derived stem cells: comparison with bone marrow mesenchymal stem cells. Br J Haematol 2005; 129: 118129.
  • 25
    McIntosh K, Zvonic S, Garrett S et al. The immunogenicity of human adipose-derived cells: temporal changes in vitro. Stem Cells 2006; 24: 12461253.
  • 26
    Gronthos S, Franklin DM, Leddy HA et al. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol 2001; 189: 5463.
  • 27
    Constantin G, Majeed M, Giagulli C et al. Chemokines trigger immediate beta2 integrin affinity and mobility changes: differential regulation and roles in lymphocyte arrest under flow. Immunity 2000; 16: 759769.
  • 28
    Safford KM, Hicok KC, Safford SD et al. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun 2002; 294: 371379.
  • 29
    Safford KM, Safford SD, Gimble JM et al. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol 2004; 187: 319328.
  • 30
    De Ugarte DA, Morizono K, Elbarbary A et al. Comparison of multi-lineage cells from human adipose tissue and bone marrow. Cells Tissues Organs 2003; 174: 101109.
  • 31
    Kang SK, Shin MJ, Jung JS et al. Autologous adipose tissue-derived stromal cells for treatment of spinal cord injury. Stem Cells Dev 2006; 15: 583594.
  • 32
    Kokai LE, Rubin JP, Marra KG. The potential of adipose-derived adult stem cells as a source of neuronal progenitor cells. Plast Reconstr Surg 2005; 116: 14531460.
  • 33
    Fujimura J, Ogawa R, Mizuno H et al. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice. Biochem Biophys Res Commun 2005; 333: 116121.
  • 34
    Ning H, Lin G, Lue TF et al. Neuron-like differentiation of adipose tissue-derived stromal cells and vascular smooth muscle cells. Differentiation 2006; 74: 510518.
  • 35
    Krampera M, Marconi S, Pasini A et al. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone 2007; 40: 382390.
  • 36
    Anghileri E, Marconi S, Pignatelli A et al. Neuronal differentiation potential of human adipose-derived mesenchymal stem cells. Stem Cells Dev 2008; 17: 909916.
  • 37
    Constantin G, Laudanna C, Brocke S et al. Inhibition of experimental autoimmune encephalomyelitis by a tyrosine kinase inhibitor. J Immunol 1999; 162: 11441149.
  • 38
    George TC, Fanning SL, Fitzgerald-Bocarsly P et al. Quantitative measurement of nuclear translocation events using similarity analysis of multispectral cellular images obtained in flow. J Immunol Methods 2006; 311: 117125.
  • 39
    Bolomini-Vittori M, Montresor A, Giagulli C et al. Regulation of conformer-specific activation of the integrin LFA-1 by a chemokine-triggered Rho signaling module. Nat Immunol 2009; 10: 185194.
  • 40
    Piccio L, Rossi B, Scarpini E et al. Molecular mechanisms involved in lymphocyte recruitment in brain microcirculation: critical roles for PSGL-1 and trimeric G alpha-linked receptors. J Immunol 2002; 168: 19401949.
  • 41
    Lovato L, Cianti R, Gini B et al. Transketolase and CNPase I are specifically recognized by IgG autoantibodies in multiple sclerosis patients. Mol Cell Proteomics 2008; 7: 23372349.
  • 42
    Lolli F, Mulinacci B, Carotenuto A et al. An N-glucosylated peptide detecting disease-specific autoantibodies, biomarkers of multiple sclerosis. Proc Natl Acad Sci USA 2005; 102: 1027310278.
  • 43
    Bonetti B, Pohl J, Gao YL et al. Cell death during autoimmune demyelination: effector but not target cells are eliminated by apoptosis. J Immunol 1997; 159: 57335741.
  • 44
    Tokunaga A, Oya T, Ishii Y et al. PDGF receptor beta is a potent regulator of mesenchymal stromal cell function. J Bone Mineral Res 2008; 23: 15191528.
  • 45
    Lachapelle F, Avellana-Adalid V, Nait-Oumesmar B, Baron-Van Evercooren A. Fibroblast growth factor-2 and platelet-derived growth factor AB promote adult SVZ-derived oligodendrogenesis in vivo. Mol Cell Neurosci 2002; 20: 390403.
  • 46
    Yednock TA, Cannon C, Fritz LC et al. Prevention of experimental autoimmune encephalomyelitis by antibodies against alpha 4 beta 1 integrin. Nature 1992; 356: 6366.
  • 47
    Meyerrose TE, De Ugarte DA, Hofling AA et al. In vivo distribution of human adipose-derived mesenchymal stem cells in novel xenotransplantation models. Stem Cells 2007; 25: 220227.
  • 48
    Zaragosi LE, Ailhaud G, Dani C. Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 2006; 24: 24122419.
  • 49
    Liu X, Mashour GA, De Webster H, Kurtz A. Basic FGF and FGF receptor 1 are expressed in microglia during experimental autoimmune encephalomyelitis: temporally distinct expression of midkine and pleiotrophin. Glia 1998; 24: 390397.
  • 50
    Spees JL, Olson SD, Ylostalo J et al. Differentiation, cell fusion and nuclear fusion during ex vivo repair of epithelium by human adult stem cells from bone marrow stroma. Proc Natl Acad Sci USA 2003; 100: 23972402.
  • 51
    Caplan A, Dennis JE. Mesenchymal stem cell as trophic mediators. J Cell Biochem 2006; 98: 10761084.
  • 52
    Rivera FJ, Couillard-Despres S, Pedre X et al. Mesenchymal stem cells instruct oligodendrogenic fate decision on adult neural stem cells. Stem Cells 2006; 24: 22092219.
  • 53
    Goddard DR, Berry M, Butt AM. In vivo actions of fibroblast growth factor 2 and insulin-like growth factor I on oligodendrocyte development and myelination in the central nervous system. J Neurosci Res 1999; 57: 7485.
  • 54
    Ruffini F, Furlan R, Poliani PL et al. Fibroblast growth factor 2 gene therapy reverts the clinical course and the pathological signs of chronic experimental autoimmune encephalomyelitis in C57BL/6 mice. Gene Therapy 2001; 8: 12071213.
  • 55
    Makar TK, Bever CT, Singh IS et al. Brain-derived neurotrophic factor gene delivery in an animal model of multiple sclerosis using bone marrow stem cells as a vehicle. J Neuroimmunol 2009; 210: 4051.