• 1
    Cotsarelis G, Cheng S-Z, Dong G et al. Existence of slow-cycling limbal epithelial basal cells that can be preferentially stimulated to proliferate: Implications on epithelial stem cells. Cell 1989; 57: 201209.
  • 2
    Daniels JT, Dart JKG, Tuft SJ et al. Corneal stem cells in review. Wound Repair Regen 2001; 9: 483494.
  • 3
    Dua HS, Shanmuganathan VA, Powell-Richards AO et al. Limbal epithelial crypts: A novel anatomical structure and a putative limbal stem cell niche. Br J Ophthalmol 2005; 89: 529532.
  • 4
    Li W, Hayashida Y, Chen Y-T et al. Niche regulation of corneal epithelial stem cells at the limbus. Cell Res 2007; 17: 2636.
  • 5
    Davanger M, Evensen A. Role of the pericorneal papillary structure in renewal of corneal epithelium. Nature 1971; 229: 560561.
  • 6
    Townsend WM. The limbal palisades of Vogt. Trans Am Ophthalmol Soc 1991; 89: 721756.
  • 7
    Chen Z, de Paiva CS, Luo L et al. Characterization of putative stem cell phenotype in human limbal epithelia. Stem Cells 2004; 22: 355366.
  • 8
    Shortt AJ, Secker GA, Munro PM et al. Characterization of the limbal epithelial stem cell niche: Novel imaging techniques permit in vivo observation and targeted biopsy of limbal epithelial stem cells. Stem Cells 2007; 25: 14021409.
  • 9
    Duke-Elder S, Cook C. Normal and abnormal development. Part 1: Embryology. In: Duke-ElderS, ed. System of Ophthalmology (Vol. III). London: Henry Kimpton, 1963; 137171.
  • 10
    Sevel D, Isaacs R. A re-evaluation of corneal development. Trans Am Ophthalmol Soc 1988; 86: 178207.
  • 11
    Rodrigues M, Ben-Zvi A, Krachmer J et al. Suprabasal expression of a 64-kilodalton keratin (no. 3) in developing human corneal epithelium. Differentiation 1987; 34: 6067.
  • 12
    Figueira EC, Di Girolamo N, Coroneo MT et al. The phenotype of limbal epithelial stem cells. Invest Ophthalmol Vis Sci 2007; 48: 144156.
  • 13
    Yoshida S, Shimmura S, Kawakita T et al. Cytokeratin 15 can be used to identify the limbal phenotype in normal and diseased ocular surfaces. Invest Ophthalmol Vis Sci 2006; 47: 47804786.
  • 14
    Du Y, Chen J, Funderburgh JL et al. Functional reconstruction of rabbit corneal epithelium by human limbal cells cultured on amniotic membrane. Mol Vis 2003; 9: 635643.
  • 15
    Lin S, Lee O-T, Minasi P et al. Isolation, culture and characterisation of human fetal trabecular meshwork cells. Curr Eye Res 2007; 32: 4350.
  • 16
    Barrandon Y, Green H. Three clonal types of keratinocyte with difference capacities for multiplication. Proc Natl Acad Sci USA 1987; 84: 23022306.
  • 17
    Di Girolamo N, Bosch M, Zamora K et al. A contact lens-based technique for expansion and transplantation of autologous epithelial progenitors for ocular surface reconstruction. Transplantation 2009; 87: 15711578.
  • 18
    Ng J, Coroneo MT, Wakefield D et al. Ultraviolet radiation and the role of matrix metalloproteinases in the pathogenesis of ocular surface squamous neoplasia. Invest Ophthalmol Vis Sci 2008; 49: 52955306.
  • 19
    Di Girolamo N, Chui J, Wakefield D et al. Cultured human ocular surface epithelium on therapeutic contact lenses. Br J Ophthalmol 2007; 91: 459464.
  • 20
    Di Girolamo N, Sarris M, Chui J et al. Localization of the low-affinity nerve growth factor receptor p75 in human limbal epithelial cells. J Cell Mol Med 2008; 12: 27992811.
  • 21
    Qi H, Li D-Q, Shine HD et al. Nerve growth factor and its receptor TrkA serve as potential markers for human corneal epithelial progenitor cells. Exp Eye Res 2008; 86: 3440.
  • 22
    Thoft RA, Friend J. The X, Y, Z hypothesis of corneal epithelial maintenance. Invest Ophthalmol Vis Sci 1983; 24: 14421443.
  • 23
    Bozani´c D, Tafra R, Saraga-Babic M. Role of apoptosis and mitosis during human eye development. Eur J Cell Biol 2003; 82: 421429.
  • 24
    Scholzen T, Gerdes J. The Ki-67 protein: From the known and the unknown. J Cell Physiol 2000; 182: 311322.
  • 25
    Barnard NJ, Hall PA, Lemoine NR et al. Proliferative index in breast carcinoma determined in situ by Ki67 immunostaining and its relationship to clinical and pathological variables. J Pathol 1987; 152: 287295.
  • 26
    Moll R, Franke WW, Schiller DL et al. The catalog of human cytokeratins: Patterns of expression in normal epithelia, tumours and cultured cells. Cell 1982; 31: 1124.
  • 27
    Kasper M, Moll R, Stosiek P et al. Patterns of cytokeratin and vimentin expression in the human eye. Histochemistry 1988; 89: 369377.
  • 28
    Yang A, Schweitzer R, Sun D et al. p63 is essential for regenerative proliferation in limb, craniofacial and epithelial development. Nature 1999; 398: 714718.
  • 29
    Di Iorio E, Barbaro V, Ruzza A et al. Isoforms of DeltaNp63 and the migration of ocular limbal cells in human corneal regeneration. Proc Natl Acad Sci USA 2005; 102: 95239528.
  • 30
    Kawasaki S, Tanioka H, Yamasaki K et al. Expression and tissue distribution of p63 isoforms in human ocular surface epithelia. Exp Eye Res 2006; 82: 293299.
  • 31
    Watanabe K, Nishida K, Yamato M et al. Human limbal epithelium contains side population cells expressing the ATP-binding cassette transporter ABCG2. FEBS Lett 2004; 565: 610.
  • 32
    Yew DT, Sha O, Li WWY et al. Proliferation and apoptosis in the epithelium of the developing human cornea and conjunctiva. Life Sci 2001; 68: 29873003.
  • 33
    Castro-Combs J, Noguera G, Cano M et al. Corneal wound healing is modulated by topical application of amniotic fluid in an ex vivo organ culture model. Exp Eye Res 2008; 87: 5663.
  • 34
    Blahovec J, Kostecka Z, Lacroix MC et al. Mitogenic activity of high molecular weight forms of insulin-like growth factor-II in amniotic fluid. J Endocrinol 2001; 169: 563572.
  • 35
    Maseruka H, Ridgway A, Tullo A et al. Developmental changes in patterns of expression of tenascin-C variants in the human cornea. Invest Ophthalmol Vis Sci 2000; 41: 41014107.
  • 36
    Yeung AM, Tint NL, Kulkarni BB et al. Infant limbus: An immunohistochemical study. Exp Eye Res 2009; 88: 11611164.
  • 37
    Lesueur L, Arne JL, Mignon-Conte M et al. Structural and ultrastructural changes in the developmental process of premature infants' and children's corneas. Cornea 1994; 13: 331338.
  • 38
    Collinson JM, Chanas SA, Hill RE et al. Corneal development, limbal stem cell function, and corneal epithelial cell migration in the Pax6+/− mouse. Invest Ophthalmol Vis Sci 2004; 45: 11011108.
  • 39
    Sugar J. Chapter 7: congenital stem cell deficiency. In: HollandEJ, MannisMJ, eds. Ocular Surface Disease: Medical and Surgical Management. New York: Springer, 2002: 9399.
  • 40
    Lee H, Khan R, O'Keefe M. Aniridia: Current pathology and management. Acta Ophthalmol 2008; 86: 708715.
  • 41
    Blache P, van de Wetering M, Duluc I et al. Sox9 is an intestine crypt transcription factor, is regulated by the Wnt pathway, and represses the CDX2 and MUC2 genes. J Cell Biol 2004; 166: 3747.
  • 42
    Paus R, Muller-Rover S, van der Veen C et al. A comprehensive guide for the recognition and classification of distinct stages of hair follicle morphogenesis. J Invest Dermatol 1999; 113: 523532.
  • 43
    Lamkanfi M, Festjens N, Declercq W et al. Caspases in cell survival, proliferation and differentiation. Cell Death Differ 2007; 14: 4455.
  • 44
    Pearton DJ, Ferraris C, Dhouailly D. Transdifferentiation of corneal epithelium: Evidence for a linkage between the segregation of epidermal stem cells and the induction of hair follicles during embryogenesis. Int J Dev Biol 2004; 48: 197201.
  • 45
    Akiyama M, Smith LT, Shimizu H. Changing patterns of localization of putative stem cells in developing human hair follicles. J Invest Dermatol 2000; 114: 321327.
  • 46
    Chung E-H, Bukusoglu G, Zieske JD. Localization of corneal epithelial stem cells in the developing rat. Invest Ophthalmol Vis Sci 1992; 33: 21992206.
  • 47
    Zieske JD, Wasson M. Regional variation in distribution of EGF receptor in developing and adult corneal epithelium. J Cell Sci 1993; 106: 145152.
  • 48
    Zieske JD. Corneal development associated with eyelid opening. Int J Dev Biol 2004; 48: 903911.
  • 49
    Lyngholm M, Høyer PE, Vorum H et al. Immunohistochemical markers for corneal stem cells in the early developing human eye. Exp Eye Res 2008; 87: 115121.
  • 50
    Laurikkala J, Mikkola ML, James M et al. p63 regulates multiple signalling pathways required for ectodermal organogenesis and differentiation. Development 2006; 133: 15531563.
  • 51
    Liu J, Song G, Wang Z et al. Establishment of a corneal epithelial cell line spontaneously derived from human limbal cells. Exp Eye Res 2007; 84: 599609.
  • 52
    Green H. The birth of therapy with cultured cells. Bioessays 2008; 30: 897903.
  • 53
    Chang CY, Green CR, McGhee CN et al. Acute wound healing in the human central corneal epihtelium appears to be independent of limbal stem cell influence. Invest Ophthalmol Vis Sci 2008; 49: 52795286.
  • 54
    Li W, Hayashida Y, He H et al. The fate of limbal epithelial progenitor cells during explant culture on intact amniotic membrane. Invest Ophthalmol Vis Sci 2007; 48: 605613.
  • 55
    Zhang ZY, Teoh SH, Chong MS et al. Superior osteogenic capacity for bone tissue engineering of fetal compared with perinatal and adult mesenchymal stem cells. Stem Cells 2009; 27: 126137.
  • 56
    Vrana NE, Builles N, Justin V et al. Development of a reconstituted cornea from collagen-chondroitin sulfate foams and human cell cultures. Invest Ophthalmol Vis Sci 2008; 49: 53255321.
  • 57
    Whitcher JP, Srinivasan M, Upadhyay MP. Corneal blindness: A global perspective. Bull World Health Org 2001; 79: 214221.