SEARCH

SEARCH BY CITATION

References

  • 1
    Parish CL, Arenas E. Stem-cell-based strategies for the treatment of Parkinson's disease. Neurodegener Dis 2007; 4: 339347.
  • 2
    Ciani L, Salinas PC. WNTs in the vertebrate nervous system: From patterning to neuronal connectivity. Nat Rev Neurosci 2005; 6: 351362.
  • 3
    Ille F, Sommer L. Wnt signaling: Multiple functions in neural development. Cell Mol Life Sci 2005; 62: 11001108.
  • 4
    Gaulden J, Reiter JF. Neur-ons and neur-offs: Regulators of neural induction in vertebrate embryos and embryonic stem cells. Hum Mol Genet 2008; 17: R6066.
  • 5
    Castelo-Branco G, Arenas E. Function of Wnts in dopaminergic neuron development. Neurodegener Dis 2006; 3: 511.
  • 6
    Macdonald BT, Semenov MV, He X. SnapShot: Wnt/beta-catenin signaling. Cell 2007; 131: 1204.
  • 7
    Castelo-Branco G, Wagner J, Rodriguez FJ et al. Differential regulation of midbrain dopaminergic neuron development by Wnt-1, Wnt-3a, and Wnt-5a. Proc Natl Acad Sci U S A 2003; 100: 1274712752.
  • 8
    Parish CL, Castelo-Branco G, Rawal N et al. Wnt5a-treated midbrain neural stem cells improve dopamine cell replacement therapy in parkinsonian mice. J Clin Invest 2008; 118: 149160.
  • 9
    Panhuysen M, Vogt Weisenhorn DM, Blanquet V et al. Effects of Wnt1 signaling on proliferation in the developing mid-/hindbrain region. Mol Cell Neurosci 2004; 26: 101111.
  • 10
    McMahon AP, Bradley A. The Wnt-1 (int-1) proto-oncogene is required for development of a large region of the mouse brain. Cell 1990; 62: 10731085.
  • 11
    Thomas KR, Capecchi MR. Targeted disruption of the murine int-1 proto-oncogene resulting in severe abnormalities in midbrain and cerebellar development. Nature 1990; 346: 847850.
  • 12
    Joksimovic M, Yun BA, Kittappa R et al. ( 2009). Wnt antagonism of Shh facilitates midbrain floor plate neurogenesis. Nat Neurosci.
  • 13
    Prakash N, Brodski C, Naserke T et al. A Wnt1-regulated genetic network controls the identity and fate of midbrain-dopaminergic progenitors in vivo. Development 2006; 133: 8998.
  • 14
    Kohn AD, Moon RT. Wnt and calcium signaling: beta-catenin-independent pathways. Cell Calcium 2005; 38: 439446.
  • 15
    Seifert JR, Mlodzik M. Frizzled/PCP signalling: A conserved mechanism regulating cell polarity and directed motility. Nat Rev Genet 2007; 8: 126138.
  • 16
    Semenov MV, Habas R, Macdonald BT et al. SnapShot: Noncanonical Wnt Signaling Pathways. Cell 2007; 131: 1378.
  • 17
    Andersson ER, Prakash N, Cajanek L et al. Wnt5a regulates ventral midbrain morphogenesis and the development of A9-A10 dopaminergic cells in vivo. Plos One 2008; 3: e3517.
  • 18
    Kawano Y, Kypta R. Secreted antagonists of the Wnt signalling pathway. J Cell Sci 2003; 116: 26272634.
  • 19
    Bryja V, Bonilla S, Cajanek L et al. An efficient method for the derivation of mouse embryonic stem cells. Stem Cells 2006; 24: 844849.
  • 20
    Bryja V, Bonilla S, Arenas E. Derivation of mouse embryonic stem cells. Nat Protoc 2006; 1: 20822087.
  • 21
    Parisi S, D'Andrea D, Lago CT et al. Nodal-dependent Cripto signaling promotes cardiomyogenesis and redirects the neural fate of embryonic stem cells. J Cell Biol 2003; 163: 303314.
  • 22
    Barberi T, Klivenyi P, Calingasan NY et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat Biotechnol 2003; 21: 12001207.
  • 23
    Ying QL, Stavridis M, Griffiths D et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21: 183186.
  • 24
    Parish CL, Parisi S, Persico MG et al. Cripto as a target for improving embryonic stem cell-based therapy in Parkinson's disease. Stem Cells 2005; 23: 471476.
  • 25
    Bryja V, Cajanek L, Pachernik J et al. Abnormal development of mouse embryoid bodies lacking p27Kip1 cell cycle regulator. Stem Cells 2005; 23: 965974.
  • 26
    Kawasaki H, Mizuseki K, Nishikawa S et al. Induction of midbrain dopaminergic neurons from ES cells by stromal cell-derived inducing activity. Neuron 2000; 28: 3140.
  • 27
    Danielian PS, McMahon AP. Engrailed-1 as a target of the Wnt-1 signalling pathway in vertebrate midbrain development. Nature 1996; 383: 332334.
  • 28
    Andersson E, Tryggvason U, Deng Q et al. Identification of intrinsic determinants of midbrain dopamine neurons. Cell 2006; 124: 393405.
  • 29
    Kittappa R, Chang WW, Awatramani RB et al. The foxa2 gene controls the birth and spontaneous degeneration of dopamine neurons in old age. Plos Biol 2007; 5: e325.
  • 30
    He X, Semenov M, Tamai K et al. LDL receptor-related proteins 5 and 6 in Wnt/beta-catenin signaling: arrows point the way. Development 2004; 131: 16631677.
  • 31
    Young CS, Kitamura M, Hardy S et al. Wnt-1 induces growth, cytosolic beta-catenin, and Tcf/Lef transcriptional activation in Rat-1 fibroblasts. Mol Cell Biol 1998; 18: 24742485.
  • 32
    Bryja V, Schulte G, Arenas E. Wnt-3a utilizes a novel low dose and rapid pathway that does not require casein kinase 1-mediated phosphorylation of Dvl to activate beta-catenin. Cell Signal 2007; 19: 610616.
  • 33
    Gonzalez-Sancho JM, Brennan KR, Castelo-Soccio LA et al. Wnt proteins induce dishevelled phosphorylation via an LRP5/6-independent mechanism, irrespective of their ability to stabilize beta-catenin. Mol Cell Biol 2004; 24: 47574768.
  • 34
    Jho EH, Zhang T, Domon C et al. Wnt/beta-catenin/Tcf signaling induces the transcription of Axin2, a negative regulator of the signaling pathway. Mol Cell Biol 2002; 22: 11721183.
  • 35
    Yamaguchi TP, Takada S, Yoshikawa Y et al. T (Brachyury) is a direct target of Wnt3a during paraxial mesoderm specification. Genes Dev 1999; 13: 31853190.
  • 36
    Arnold SJ, Stappert J, Bauer A et al. Brachyury is a target gene of the Wnt/beta-catenin signaling pathway. Mech Dev 2000; 91: 249258.
  • 37
    Castelo-Branco G, Rawal N, Arenas E. GSK-3beta inhibition/beta-catenin stabilization in ventral midbrain precursors increases differentiation into dopamine neurons. J Cell Sci 2004; 117: 57315737.
  • 38
    Pinson KI, Brennan J, Monkley S et al. An LDL-receptor-related protein mediates Wnt signalling in mice. Nature 2000; 407: 535538.
  • 39
    Tamai K, Semenov M, Kato Y et al. LDL-receptor-related proteins in Wnt signal transduction. Nature 2000; 407: 530535.
  • 40
    Wehrli M, Dougan ST, Caldwell K et al. Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature 2000; 407: 527530.
  • 41
    McMahon AP, Moon RT. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 1989; 58: 10751084.
  • 42
    Sokol S, Christian JL, Moon RT et al. Injected Wnt RNA induces a complete body axis in Xenopus embryos. Cell 1991; 67: 741752.
  • 43
    Otero JJ, Fu W, Kan L et al. Beta-catenin signaling is required for neural differentiation of embryonic stem cells. Development 2004; 131: 35453557.
  • 44
    Aubert J, Dunstan H, Chambers I et al. Functional gene screening in embryonic stem cells implicates Wnt antagonism in neural differentiation. Nat Biotechnol 2002; 20: 12401245.
  • 45
    Verani R, Cappuccio I, Spinsanti P et al. Expression of the Wnt inhibitor Dickkopf-1 is required for the induction of neural markers in mouse embryonic stem cells differentiating in response to retinoic acid. J Neurochem 2007; 100: 242250.
  • 46
    Semënov MV, Tamai K, Brott BK et al. Head inducer Dickkopf-1 is a ligand for Wnt coreceptor LRP6. Curr Biol 2001; 11: 951961.
  • 47
    Bafico A, Liu G, Yaniv A et al. Novel mechanism of Wnt signalling inhibition mediated by Dickkopf-1 interaction with LRP6/Arrow. Nat Cell Biol 2001; 3: 683686.
  • 48
    Hayashi H, Morizane A, Koyanagi M et al. Meningeal cells induce dopaminergic neurons from embryonic stem cells. Eur J Neurosci 2008; 27: 261268.
  • 49
    Veeman MT, Axelrod JD, Moon RT. A second canon. Functions and mechanisms of beta-catenin-independent Wnt signaling. Dev Cell 2003; 5: 367377.
  • 50
    Topol L, Jiang X, Choi H et al. Wnt-5a inhibits the canonical Wnt pathway by promoting GSK-3-independent beta-catenin degradation. J Cell Biol 2003; 162: 899908.
  • 51
    Tahinci E, Thorne CA, Franklin JL et al. Lrp6 is required for convergent extension during Xenopus gastrulation. Development 2007; 134: 40954106.
  • 52
    Bryja V, Andersson ER, Schambony A et al. The extracellular domain of Lrp5/6 inhibits noncanonical Wnt signaling in vivo. Mol Biol Cell 2009; 20: 924936.
  • 53
    Clevers H. Wnt/beta-Catenin Signaling in Development and Disease. Cell 2006; 127: 469480.
  • 54
    White BD, Nguyen NK, Moon RT. Wnt signaling: It gets more humorous with age. Curr Biol 2007; 17: R923925.
  • 55
    Rawal N, Corti O, Sacchetti P et al. ( 2009). Parkin protects dopaminergic neurons from excessive Wnt/beta-catenin signaling. Biochem Biophys Res Commun doi:10.1016/j.bbrc. 2009. 07.014.