• 1
    Evans MJ, Kaufman MH. Establishment In Culture Of Pluripotential Cells From Mouse Embryos. Nature 1981; 292: 154156.
  • 2
    Thomson JA, Itskovitz-Eldor J, Shapiro SS et al. Embryonic stem cell lines derived from human blastocysts [erratum appears in Science 1998 Dec 4;282(5395):1827]. Science 1998; 282: 11451147.
  • 3
    Ludwig TE, Levenstein ME, Jones JM et al. Derivation of human embryonic stem cells in defined conditions. Nat Biotechnol 2006; 24: 185187.
  • 4
    Keller G. Embryonic stem cell differentiation: emergence of a new era in biology and medicine. Genes Dev 2005; 19: 11291155.
  • 5
    Smith AG. Embryo-derived stem cells: Of mice and men (Review). Annu Rev Cell Dev Biol 2001; 17: 435462.
  • 6
    Boyer LA, Lee TI, Cole MF et al. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 2005; 122: 947956.
  • 7
    Boyer LA, Mathur D, Jaenisch R. Molecular control of pluripotency (Review). Curr Opin Genet Dev 2006; 16: 455462.
  • 8
    Ivanova N, Dobrin R, Lu R et al. Dissecting self-renewal in stem cells with RNA interference. Nature 2006; 442: 533538.
  • 9
    Loh YH, Wu Q, Chew JL et al. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat Genet 2006; 38: 431440.
  • 10
    Wang J, Rao S, Chu J et al. A protein interaction network for pluripotency of embryonic stem cells. Nature 2006; 444: 364368.
  • 11
    Kim J, Chu J, Shen X et al. An extended transcriptional network for pluripotency of embryonic stem cells [erratum appears in Cell. 2008 Jun 27;133(7):1290]. Cell 2008; 132: 10491061.
  • 12
    Chambers I, Colby D, Robertson M et al. Functional expression cloning of Nanog, a pluripotency sustaining factor in embryonic stem cells. Cell 2003; 113: 643655.
  • 13
    Nichols J, Zevnik B, Anastassiadis K et al. Formation of pluripotent stem cells in the mammalian embryo depends on the POU transcription factor Oct4. Cell 1998; 95: 379391.
  • 14
    Niwa H, Burdon T, Chambers I et al. Self-renewal of pluripotent embryonic stem cells is mediated via activation of STAT3. Genes Dev 1998; 12: 20482060.
  • 15
    Niwa H, Miyazaki J, Smith AG. Quantitative expression of Oct-3/4 defines differentiation, dedifferentiation or self-renewal of ES cells. Nat Genet 2000; 24: 372376.
  • 16
    Niwa H, Toyooka Y, Shimosato D et al. Interaction between Oct3/4 and Cdx2 determines trophectoderm differentiation. Cell 2005; 123: 917929.
  • 17
    Strumpf D, Mao CA, Yamanaka Y et al. Cdx2 is required for correct cell fate specification and differentiation of trophectoderm in the mouse blastocyst. Development 2005; 132: 20932102.
  • 18
    Mitsui K, Tokuzawa Y, Itoh H et al. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 2003; 113: 631642.
  • 19
    Ying QL, Wray J, Nichols J et al. The ground state of embryonic stem cell self-renewal. Nature 2008; 453: 519523.
  • 20
    Baron F, Sybert VP, Andrews RG. Cutaneous and extracutaneous neutrophilic infiltrates (Sweet Syndrome) in three patients with Fanconi anemia. J Pediatr 1989; 115: 726729.
  • 21
    Szutorisz H, Dillon N. The epigenetic basis for embryonic stem cell pluripotency. Bioessays 2005; 27: 12861293.
  • 22
    Bernstein BE, Mikkelsen TS, Xie X et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 2006; 125: 315326.
  • 23
    Pereira L, Yi F, Merrill BJ. Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 2006; 26: 74797491.
  • 24
    Cole MF, Johnstone SE, Newman JJ et al. Tcf3 is an integral component of the core regulatory circuitry of embryonic stem cells. Genes Dev 2008; 22: 746755.
  • 25
    Yi F, Pereira L, Merrill BJ. Tcf3 functions as a steady-state limiter of transcriptional programs of mouse embryonic stem cell self-renewal. Stem Cells 2008; 26: 19511960.
  • 26
    Ho L, Ronan JL, Wu J et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Pnas 2009; 106: 51815186.
  • 27
    Kidder BL, Palmer S, Knott JG. SWI/SNF-Brg1 regulates self-renewal and occupies core pluripotency-related genes in embryonic stem cells. Stem Cells 2009; 27: 317328.
  • 28
    Sparwasser T, Gong S, Li JY et al. General method for the modification of different BAC types and the rapid generation of BAC transgenic mice. Genesis 2004; 38: 3950.
  • 29
    Schaniel C, Li F, Schafer XL et al. Delivery of short hairpin RNAs—triggers of gene silencing—into mouse embryonic stem cells. Nature Methods 2006; 3: 397400.
  • 30
    Hansen KH, Bracken AP, Pasini D et al. A model for transmission of the H3K27me3 epigenetic mark. Nature Cell Biol 2008; 10: 12911300.
  • 31
    Méndez J, Stillman B. Chromatin association of human origin recognition complex, cdc6, and minichromosome maintenance proteins during the cell cycle: Assembly of prereplication complexes in late mitosis. Mol Cell Biol 2000; 20: 86028612.
  • 32
    Boyer LA, Plath K, Zeitlinger J et al. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 2006; 441: 349353.
  • 33
    Frank SR, Schroeder M, Fernandez P et al. Binding of c-Myc to chromatin mediates mitogen-induced acetylation of histone H4 and gene activation. Genes Dev 2001; 15: 20692082.
  • 34
    Bain G, Ray WJ, Yao M et al. Retinoic acid promotes neural and represses mesodermal gene expression in mouse embryonic stem cells in culture. Biochem Biophys Res Commun 1996; 223: 691694.
  • 35
    Matsuda T, Nakamura T, Nakao K et al. STAT3 activation is sufficient to maintain an undifferentiated state of mouse embryonic stem cells. EMBO J 1999; 18: 42614269.
  • 36
    Ying QL, Stavridis M, Griffiths D et al. Conversion of embryonic stem cells into neuroectodermal precursors in adherent monoculture. Nat Biotechnol 2003; 21: 183186.
  • 37
    Zhang HS, Gavin M, Dahiya A et al. Exit from G1 and S phase of the cell cycle is regulated by repressor complexes containing HDAC-Rb-hSWI/SNF and Rb-hSWI/SNF. Cell 2000; 101: 7989.
  • 38
    Chen J, Archer TK. Regulating SWI/SNF subunit levels via protein–protein interactions and proteasomal degradation: BAF155 and BAF170 limit expression of BAF57. Mol Cell Biol 2005; 25: 90169027.
  • 39
    Sohn DH, Lee KY, Lee C et al. SRG3 interacts directly with the major components of the SWI/SNF chromatin remodeling complex and protects them from proteasomal degradation. J Biol Chem 2007; 282: 1061410624.
  • 40
    Mohrmann L, Verrijzer CP. Composition and functional specificity of SWI2/SNF2 class chromatin remodeling complexes (Review). Biochim Biophys Acta 2005; 1681: 5973.
  • 41
    Xue Y, Canman JC, Lee CS et al. The human SWI/SNF-B chromatin-remodeling complex is related to yeast rsc and localizes at kinetochores of mitotic chromosomes. Pnas 2000; 97: 1301513020.
  • 42
    Yan Z, Cui K, Murray DM et al. PBAF chromatin-remodeling complex requires a novel specificity subunit, BAF200, To Regulate Expression Of Selective interferon-responsive Genes. Genes Dev 2005; 19: 16621667.
  • 43
    Kwon CS, Wagner D. Unwinding chromatin for development and growth: a few genes at a time (Review). Trends Genet 2007; 23: 403412.
  • 44
    Yan Z, Wang Z, Sharova L et al. BAF250B-associated SWI/SNF chromatin-remodeling complex is required to maintain undifferentiated mouse embryonic stem cells. Stem Cells 2008; 26: 11551165.
  • 45
    Gao X, Tate P, Hu P et al. ES cell pluripotency and germ-layer formation require the SWI/SNF chromatin remodeling component BAF250a. Pnas 2008; 105: 66566661.
  • 46
    Chiba H, Muramatsu M, Nomoto A et al. Two human homologues of Saccharomyces cerevisiae SWI2/SNF2 and Drosophila brahma are transcriptional coactivators cooperating with the estrogen receptor and the retinoic acid receptor. Nucleic Acids Res 1994; 22: 18151820.
  • 47
    Kuroda T, Tada M, Kubota H et al. Octamer and Sox elements are required for transcriptional cis regulation of Nanog gene expression. Mol Cell Biol 2005; 25: 24752485.
  • 48
    Bannister AJ, Zegerman P, Partridge JF et al. Selective recognition of methylated lysine 9 on histone H3 by the HP1 chromo domain. Nature 2001; 410: 120124.
  • 49
    Lachner M, O'Carroll D, Rea S et al. Methylation of histone H3 lysine 9 creates a binding site for HP1 proteins. Nature 2001; 410: 116120.
  • 50
    Meshorer E, Yellajoshula D, George E et al. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev Cell 2006; 10: 105116.
  • 51
    Sudarsanam P, Winston F. The Swi/Snf family nucleosome-remodeling complexes and transcriptional control (Review). Trends Genet 2000; 16: 345351.
  • 52
    Roberts CW, Orkin SH. The SWI/SNF complex–chromatin and cancer (Review). Nature Rev Cancer 2004; 4: 133142.
  • 53
    Lessard J, Wu JI, Ranish JA et al. An essential switch in subunit composition of a chromatin remodeling complex during neural development. Neuron 2007; 55: 201215.
  • 54
    Reisman D, Glaros S, Thompson EA. The SWI/SNF complex and cancer (Review). Oncogene 2009; 28: 16531668.
  • 55
    Efroni S, Duttagupta R, Cheng J et al. Global transcription in pluripotent embryonic stem cells. Cell Stem Cell 2008; 2: 437447.
  • 56
    Ho L, Ronan JL, Wu J et al. An embryonic stem cell chromatin remodeling complex, esBAF, is essential for embryonic stem cell self-renewal and pluripotency. Proc Natl Acad Sci U S A 2009; 106: 51815186.