SEARCH

SEARCH BY CITATION

References

  • 1
    Nelson P, Kiriakidou M, Sharma A et al. The microRNA world: Small is mighty. Trends Biochem Sci 2003; 28: 534540.
  • 2
    Lee RC, Feinbaum RL, Ambros V. The C elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 1993; 75: 843854.
  • 3
    Johnston RJ, Hobert O. A microRNA controlling left/right neuronal asymmetry in Caenorhabditis elegans. Nature 2003; 426: 845849.
  • 4
    Esquela-Kerscher A, Slack F Oncomirs-microRNAs with a role in cancer. Nat Rev Cancer 2006; 6: 259269.
  • 5
    Yi R, Poy MN, Stoffel M et al. Skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008; 452: 225229.
  • 6
    Xu N, Papagiannakopoulos T, Pan G et al. MicroRNA-145 regulates OCT4, SOX2, and KLF4 and represses pluripotency in human embryonic stem cells. Cell 2009; 137( 4): 606608.
  • 7
    Esau C, Kang X, Peralta E et al. MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 2004; 279: 5236152365.
  • 8
    Chan JA, Krichevsky AM, Kosik KS. MicroRNA-21 is an antiapoptotic factor in human glioblastoma cells. Cancer Res 2005; 65: 60296033.
  • 9
    Krichevsky AM, Gabriely G. miR-21: A small multi-faceted RNA. J Cell Mol Med 2009; 13( 1): 3953.
  • 10
    Meng F, Henson R, Wehbe-Janek H et al. MicroRNA-21 regulates expression of the PTEN tumor suppressor gene in human hepatocellular cancer. Gastroenterology 2007; 133( 2): 647658.
  • 11
    Chan SH, Wu CW, Li AF et al. miR-21 microRNA expression in human gastric carcinomas and its clinical association. Anticancer Res 2008; 28( 2A): 907911.
  • 12
    Iorio MV, Visone R, Di Leva G et al. MicroRNA signatures in human ovarian cancer. Cancer Res 2007; 67( 18): 86998707.
  • 13
    Nam EJ, Yoon H, Kim SW et al. MicroRNA expression profiles in serous ovarian carcinoma. Clin Cancer Res 2008; 14( 9): 26902695.
  • 14
    Lui WO, Pourmand N, Patterson BK et al. Patterns of known and novel small RNAs in human cervical cancer. Cancer Res 2007; 67( 13): 60316043.
  • 15
    Tran N, McLean T, Zhang X et al. MicroRNA expression profiles in head and neck cancer cell lines. Biochem Biophys Res Commun 2007; 358( 1): 1217.
  • 16
    Schwertheim S, Sheu SY, Worm K et al. Analysis of deregulated miRNAs is helpful to distinguish poorly differentiated thyroid carcinoma from papillary thyroid carcinoma. Horm Metab Res 2009; 41( 6): 475481.
  • 17
    Cheng Y, Ji R, Yue J et al. MicroRNAs are aberrantly expressed in hypertrophic heart: Do they play a role in cardiac hypertrophy? Am J Pathol 2007; 170( 6): 18311840.
  • 18
    Tatsuguchi M, Seok HY, Callis TE et al. Expression of microRNAs is dynamically regulated during cardiomyocyte hypertrophy. J Mol Cell Cardiol 2007; 42( 6): 11371141.
  • 19
    van Rooij E, Sutherland LB, Liu N et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci U S A 2006; 103( 48): 1825518260.
  • 20
    Ji R, Cheng Y, Yue J et al. MicroRNA expression signature and antisense-mediated depletion reveal an essential role of MicroRNA in vascular neointimal lesion formation. Circ Res 2007; 100( 11): 15791588.
  • 21
    Talotta F, Cimmino A, Matarazzo MR et al. An autoregulatory loop mediated by miR-21 and PDCD4 controls the AP-1 activity in RAS transformation. Oncogene 2009; 28( 1): 7384.
  • 22
    Houbaviy HB, Murray MF, Sharp PA. Embryonic stem cell-specific microRNAs. Dev Cell 2003; 5: 351358.
  • 23
    Chen A, Luo M, Yuan G et al. Complementary analysis of microRNA and mRNA expression during phorbol 12-myristate 13-acetate (TPA)-induced differentiation of HL-60 cells. Biotechnol Lett 2008; 30( 12): 20452052.
  • 24
    Papagiannakopoulos T, Shapiro A, Kosik KS. MicroRNA-21 targets a network of key tumor-suppressive pathways in glioblastoma cells. Cancer Res 2008; 68( 19): 81648172.
  • 25
    Ignotz RA, Massagué J. Type beta transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc Natl Acad Sci U S A 1985; 82( 24): 85308534.
  • 26
    Sparks RL, Scott RE. Transforming growth factor type beta is a specific inhibitor of 3T3 T mesenchymal stem cell differentiation. Exp Cell Res 1986; 165( 2): 345352.
  • 27
    Torti FM, Torti SV, Larrick JW et al. Modulation of adipocyte differentiation by tumor necrosis factor and transforming growth factor beta. J Cell Biol 1989; 108( 3): 11051113.
  • 28
    Petruschke T, Röhrig K, Hauner H. Transforming growth factor beta (TGF-beta) inhibits the differentiation of human adipocyte precursor cells in primary culture. Int J Obes Relat Metab Disord 1994; 18( 8): 532536.
  • 29
    Clouthier DE, Comerford SA, Hammer RE. Hepatic fibrosis, glomerulosclerosis, and a lipodystrophy-like syndrome in PEPCK-TGF-beta1 transgenic mice. J Clin Invest 1997; 100( 11): 26972713.
  • 30
    Zuk PA, Zhu M, Ashjian P et al. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 2002; 13: 42794295.
  • 31
    Rodriguez AM, Elabd C, Amri EZ et al. The human adipose tissue is a source of multipotent stem cells. Biochimie 2005; 87: 125128.
  • 32
    Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol 2003; 58: 137160.
  • 33
    Kim YJ, Kim HK, Cho HH et al. Direct comparison of human mesenchymal stem cells derived from adipose tissues and bone marrow in mediating neovascularization in response to vascular ischemia. Cell Physiol Biochem 2007; 20: 867876.
  • 34
    Kim YJ, Bae SW, Yu SS et al. miR-196a regulates proliferation and osteogenic differentiation in mesenchymal stem cells derived from human adipose tissue. J Bone Miner Res 2009; 24( 5): 816825.
  • 35
    Forrester E, Chytil A, Bierie B et al. Effect of conditional knockout of the type II TGF-beta receptor gene in mammary epithelia on mammary gland development and polyomavirus middle T antigen induced tumor formation and metastasis. Cancer Res 2005; 65( 6): 22962302.
  • 36
    Rojas A, Padidam M, Cress D et al. TGF-beta receptor levels regulate the specificity of signaling pathway activation and biological effects of TGF-beta. Biochim Biophys Acta 2009; 1793( 7): 11651173.
  • 37
    Derynck R, Feng XH. TGF-beta receptor signaling. Biochim Biophys Acta 1997; 1333( 2): F10550.
  • 38
    Heldin CH, Miyazono K, ten Dijke P. TGF-beta signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390( 6659): 465471.
  • 39
    Massagué J. TGF-beta signal transduction. Annu Rev Biochem 1998; 67: 753791.
  • 40
    Yang J, Wahdan-Alaswad R, Danielpour D. Critical role of Smad2 in tumor suppression and transforming growth factor-beta-induced apoptosis of prostate epithelial cells. Cancer Res 2009; 69( 6): 21852190.
  • 41
    Wang W, Huang XR, Canlas E et al. Essential role of Smad3 in angiotensin II-induced vascular fibrosis. Circ Res 2006; 98( 8): 10321039.
  • 42
    Kim SG, Kim HA, Jong HS et al. The endogenous ratio of Smad2 and Smad3 influences the cytostatic function of Smad3. Mol Biol Cell 2005; 16( 10): 46724683.
  • 43
    Choy L, Skillington J, Derynck R. Roles of autocrine TGF-beta receptor and Smad signaling in adipocyte differentiation. J Cell Biol 2000; 149( 3): 667682.