SEARCH

SEARCH BY CITATION

Keywords:

  • Ex vivo expansion;
  • Corneal epithelial stem cells;
  • Limbal stem cells;
  • Limbal stem cell deficiency

Abstract

The corneal epithelium is maintained by a population of stem cells known as limbal stem cells (LSCs) due to their location in the basal layer of the outer border of the cornea known as the limbus. Treatment of limbal stem cell deficiency (LSCD) has been achieved with transplantation of ex vivo expanded LSCs taken from a small biopsy of limbus. This is a relatively new technique, and as such, specific national or international guidance has yet to be established. Because of the lack of such specific guidance, our group has sought to minimize any risk to the patient by adopting certain modifications to the research methodologies in use at present. These include the replacement of all non-human animal products from the culture system and the production of all reagents and cultures under Good Manufacturing Practice conditions. In addition, for the first time, a strictly defined uniform group of patients with total unilateral LSCD and no other significant ocular conditions has been used to allow the success or failure of treating LSCD to be attributable directly to the proposed stem cell therapy. A prospectively designed study with strict inclusion and exclusion criteria was used to enroll patients from our database of patients with unilateral LSCD. Eight eyes of eight consecutive patients with unilateral total LSCD treated with ex vivo expanded autologous LSC transplant on human amniotic membrane (HAM) with a mean follow-up of 19 (RANGE) months were included in the study. Postoperatively, satisfactory ocular surface reconstruction with a stable corneal epithelium was obtained in all eyes (100%). At last examination, best corrected visual acuity improved in five eyes and remained unchanged in three eyes. Vision impairment and pain scores improved in all patients (p < .05). This study demonstrates that transplantation of autologous limbal epithelial stem cells cultured on HAM without the use of non-human animal cells or products is a safe and effective method of reconstructing the corneal surface and restoring useful vision in patients with unilateral total LSCD. STEM CELLS 2010;28:597–610