SEARCH

SEARCH BY CITATION

Keywords:

  • Induced pluripotent stem cells;
  • Dendritic cells;
  • Macrophages;
  • MHC;
  • Embryonic stem cells;
  • Cell therapy

Abstract

Methods have been established to generate dendritic cells (DCs) from mouse and human embryonic stem (ES) cells. We designated them as ES-DCs and mouse models have demonstrated the induction of anti-cancer immunity and prevention of autoimmune disease by in vivo administration of genetically engineered ES-DCs. For the future clinical application of ES-DCs, the histoincompatibility between patients to be treated and available human ES cells and the ethical concerns associated with human ES cells may be serious obstacles. However, recently developed induced pluripotent stem (iPS) cell technology is expected to resolve these issues. This report describes the generation and characterization of DCs derived from mouse iPS cells. The iPS cell-derived DCs (iPS-DCs) possessed the characteristics of DCs including the capacity of T-cell-stimulation, antigen-processing and presentation and cytokine production. DNA microarray analyses revealed the upregulation of genes related to antigen-presenting functions during differentiation into iPS-DCs and similarity in gene expression profile in iPS-DCs and bone marrow cell-derived DCs. Genetically modified iPS-DCs expressing antigenic protein primed T-cells specific to the antigen in vivo and elicited efficient antigen-specific anti-tumor immunity. In addition, macrophages were generated from iPS cells (iPS-MP). iPS-MP were comparable with bone marrow cell-derived macrophages in the cell surface phenotype, functions, and gene expression profiles. Stem Cells 2009;27:1021–1031