SEARCH

SEARCH BY CITATION

Keywords:

  • REST;
  • REST-VP16;
  • Myoblasts;
  • Glutamatergic neurons;
  • Cerebellum

Abstract

Production of neurons from non-neural cells has far-reaching clinical significance. We previously found that myoblasts can be converted to a physiologically active neuronal phenotype by transferring a single recombinant transcription factor, REST-VP16, which directly activates target genes of the transcriptional repressor, REST. However, the neuronal subtype of M-RV cells and whether they can establish synaptic communication in the brain have remained unknown. M-RV cells engineered to express green fluorescent protein (M-RV-GFP) had functional ion channels but did not establish synaptic communication in vitro. However, when transplanted into newborn mice cerebella, a site of extensive postnatal neurogenesis, these cells expressed endogenous cerebellar granule precursors and neuron proteins, such as transient axonal glycoprotein-1, neurofilament, type-III β-tubulin, superior cervical ganglia-clone 10, glutamate receptor-2, and glutamate decarboxylase. Importantly, they exhibited action potentials and were capable of receiving glutamatergic synaptic input, similar to the native cerebellar granule neurons. These results suggest that M-RV-GFP cells differentiate into glutamatergic neurons, an important neuronal subtype, in the postnatal cerebellar milieu. Our findings suggest that although activation of REST-target genes can reprogram myoblasts to assume a general neuronal phenotype, the subtype specificity may then be directed by the brain microenvironment. STEM CELLS 2010;28:1839–1847