Prospective Identification and Isolation of Enteric Nervous System Progenitors Using Sox2§

Authors

  • Tiffany A. Heanue,

    Corresponding author
    1. Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
    • Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, U.K
    Search for more papers by this author
    • Telephone: 208-816-2115; Fax: 208-816-2565

  • Vassilis Pachnis

    1. Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
    Search for more papers by this author

  • Author contributions: T.A.H.: conception and design, collection and assembly of data, data analysis and interpretation, manuscript writing, final approval of manuscript; V.P.: conception and design, financial support, administrative support, data analysis and interpretation, manuscript writing, final approval of manuscript.

  • First published online in STEM CELLS EXPRESS November 9, 2010; available online without subscription through the open access option.

  • §

    Disclosure of potential conflicts of interest is found at the end of this article.

Abstract

The capacity to identify and isolate lineage-specific progenitor cells from developing and mature tissues would enable the development of cell replacement therapies for disease treatment. The enteric nervous system (ENS) regulates important gut functions, including controlling peristaltic muscular contractions, and consists of interconnected ganglia containing neurons and glial cells. Hirschsprung's disease (HSCR), one of the most common and best understood diseases affecting the ENS, is characterized by absence of enteric ganglia from the distal gut due to defects in gut colonization by neural crest progenitor cells and is an excellent candidate for future cell replacement therapies. Our previous microarray experiments identified the neural progenitor and stem cell marker SRY-related homoebox transcription factor 2 (Sox2) as expressed in the embryonic ENS. We now show that Sox2 is expressed in the ENS from embryonic to adult stages and constitutes a novel marker of ENS progenitor cells and their glial cell derivatives. We also show that Sox2 expression overlaps significantly with SOX10, a well-established marker of ENS progenitors and enteric glial cells. We have developed a strategy to select cells expressing Sox2, by using G418 selection on cultured gut cells derived from Sox2βgeo/+ mouse embryos, thus allowing substantial enrichment and expansion of neomycin-resistant Sox2-expressing cells. Sox2βgeo cell cultures are enriched for ENS progenitors. Following transplantation into embryonic mouse gut, Sox2βgeo cells migrate, differentiate, and colocalize with the endogenous ENS plexus. Our studies will facilitate development of cell replacement strategies in animal models, critical to develop human cell replacement therapies for HSCR. STEM CELLS 2011;29:128–140

Ancillary