• Bmi1;
  • Neural stem cells;
  • Self-renewal;
  • Neuronal differentiation;
  • Survivin;
  • Brain tumors


The Polycomb group protein Bmi1 is a key regulator of self-renewal of embryonic and adult central nervous system stem cells, and its overexpression has been shown to occur in several types of brain tumors. In a Cre/LoxP-based conditional transgenic mouse model, we show that fine-tuning of Bmi1 expression in embryonic neural stem cell (NSC) is sufficient to increase their proliferation and self-renewal potential both in vitro and in vivo. This is linked to downregulation of both the ink4a/ARF and the p21/Foxg1 axes. However, increased and ectopic proliferation induced by overexpression of Bmi1 in progenitors committed toward a neuronal lineage during embryonic cortical development, triggers apoptosis through a survivin-mediated mechanism and leads to reduced brain size. Postnatally, however, increased self-renewal capacity of neural stem/progenitor cells (NSPC) is independent of Foxg1 and resistance to apoptosis is observed in neural progenitors derived from NSC-overexpressing Bmi1. Neoplastic transformation is absent in mice-overexpressing Bmi1 aged up to 20 months. These studies provide strong evidence that fine tuning of Bmi1 expression is a viable tool to increase self-renewal capacity of NSCs both in vitro and in vivo without eliciting neoplastic transformation of these cells. STEM Cells 2011;29:700–712