Fibroblast Growth Factor Regulates Human Neuroectoderm Specification Through ERK1/2-PARP-1 Pathway§

Authors


  • Author Contribution: Y.Y.: conception and design, collection and/or assembly of data, data analysis and interpretation, and manuscript writing; C.H. and T.M.L.V.: collection and/or assembly of data and data analysis and interpretation; X.Z.: data analysis and interpretation; and S.-C.Z.: conception and design, financial support, collection and/or assembly of data, data analysis and interpretation, manuscript writing, and final approval of manuscript.

  • Disclosure of potential conflicts of interest is found at the end of this article.

  • §

    First published online in STEM CELLSEXPRESS October 13, 2011.

Abstract

Fibroblast growth factor (FGF) signaling and PAX6 transcription are required for neuroectoderm specification of human embryonic stem cells (hESCs). In this study, we asked how FGF signaling leads to PAX6 transcription and neuroectoderm specification from hESCs. Under a chemically defined medium, FGF inhibition blocked phosphorylation of extracellular signal-regulated kinase 1/2 (ERK 1/2) with a significant reduction of PAX6-expressing neuroepithelia, indicating that FGF regulates neural induction through ERK1/2 activation. Activation of FGF-ERK1/2 pathway was necessary for the activity of poly(ADP-ribose) polymerase-1 (PARP-1), a conserved nuclear protein catalyzing polymerization of ADP-ribose units. Pharmacological inhibition and genetic ablation of PARP-1 inhibited neural induction from hESCs, suggesting that FGF-ERK1/2 signal pathway regulates neuroectoderm specification through regulating PARP-1 activity. Furthermore, FGF-ERK1/2-PARP-1 cascade regulated the expression of PAX6, a transcription determinant of human neuroectoderm. Together, we propose that FGF regulates hESC neural specification through the ERK1/2-PARP-1 signaling pathway. STEM CELLS 2011;29:1975–1982.

Ancillary