You have free access to this content

STEM CELLS

Cover image for Vol. 31 Issue 9

September 2013

Volume 31, Issue 9

Pages 1731–2031

  1. Regenerative Medicine

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
  2. Embryonic Stem Cells/Induced Pluripotent Stem Cells

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      Hypoxia induces re-entry of committed cells into pluripotency (pages 1737–1748)

      Julie Mathieu, Zhan Zhang, Angelique Nelson, Deepak A. Lamba, Thomas A. Reh, Carol Ware and Hannele Ruohola-Baker

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1446

    2. You have free access to this content
    3. You have free access to this content
      Embryonic stem cells neural differentiation qualifies the role of Wnt/β-Catenin signals in human telencephalic specification and regionalization (pages 1763–1774)

      Camille Nicoleau, Christine Varela, Caroline Bonnefond, Yves Maury, Aurore Bugi, Laetitia Aubry, Pedro Viegas, Fany Bourgois-Rocha, Marc Peschanski and Anselme L Perrier

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1462

  3. Regenerative Medicine

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have full text access to this OnlineOpen article
      PEDF promotes self-renewal of limbal stem cell and accelerates corneal epithelial wound healing (pages 1775–1784)

      Tsung-Chuan Ho, Show-Li Chen, Ju-Yun Wu, Mei-Ying Ho, Lee-Jen Chen, Jui-Wen Hsieh, Huey-Chuan Cheng and Yeou-Ping Tsao

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1393

    2. You have free access to this content
      Parallel assessment of globin lentiviral transfer in induced pluripotent stem cells and adult hematopoietic stem cells derived from the same transplanted β-thalassemia patient (pages 1785–1794)

      Alisa Tubsuwan, Soumeya Abed, Annette Deichmann, Melanie D. Kardel, Cynthia Bartholomä, Alice Cheung, Olivier Negre, Zahra Kadri, Suthat Fucharoen, Christof von Kalle, Emmanuel Payen, Stany Chrétien, Manfred Schmidt, Connie J. Eaves, Philippe Leboulch and Leïla Maouche-Chrétien

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1436

    3. You have free access to this content
      SDF-1 fused to a fractalkine stalk and a GPI anchor enables functional neovascularization (pages 1795–1805)

      Georg Stachel, Teresa Trenkwalder, Franziska Götz, Chiraz El Aouni, Niklas Muenchmeier, Achim Pfosser, Claudia Nussbaum, Markus Sperandio, Antonis K. Hatzopoulos, Rabea Hinkel, Peter J. Nelson and Christian Kupatt

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1439

    4. You have free access to this content
      Patterning pluripotency in embryonic stem cells (pages 1806–1815)

      Yue Shelby Zhang, Ana Sevilla, Leo Q. Wan, Ihor R. Lemischka and Gordana Vunjak-Novakovic

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1468

  4. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      High throughput screening for inhibitors of REST in neural derivatives of human embryonic stem cells reveals a chemical compound that promotes expression of neuronal genes (pages 1816–1828)

      Jérémie Charbord, Pauline Poydenot, Caroline Bonnefond, Maxime Feyeux, Fabrice Casagrande, Benjamin Brinon, Laetitia Francelle, Gwenaelle Aurégan, Martine Guillermier, Michel Cailleret, Pedro Viegas, Camille Nicoleau, Cécile Martinat, Emmanuel Brouillet, Elena Cattaneo, Marc Peschanski, Marc Lechuga and Anselme L. Perrier

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1430

  5. Tissue-Specific Stem Cells

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      Natural killer cell-activating receptor NKG2D mediates innate immune targeting of allogeneic neural progenitor cell grafts (pages 1829–1839)

      Lori K. Phillips, Elizabeth A. Gould, Harish Babu, Sheri M. Krams, Theo D. Palmer and Olivia M. Martinez

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1422

    2. You have free access to this content
      Multipotential differentiation of human urine-derived stem cells: Potential for therapeutic applications in urology (pages 1840–1856)

      Shantaram Bharadwaj, Guihua Liu, Yingai Shi, Rongpei Wu, Bin Yang, Tongchuan He, Yuxin Fan, Xinyan Lu, Xiaobo Zhou, Hong Liu, Anthony Atala, Jan Rohozinski and Yuanyuan Zhang

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1424

    3. You have free access to this content
      Somatic loss of p53 leads to stem/progenitor cell amplification in both mammary epithelial compartments, basal and luminal (pages 1857–1867)

      Aurélie Chiche, Mejdi Moumen, Valérie Petit, Jos Jonkers, Daniel Medina, Marie-Ange Deugnier, Marisa M. Faraldo and Marina A. Glukhova

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1429

    4. You have free access to this content
      An epigenetic signature of developmental potential in neural stem cells and early neurons (pages 1868–1880)

      Matthew J. Burney, Caroline Johnston, Kee-Yew Wong, Siaw-Wei Teng, Vassilios Beglopoulos, Lawrence W Stanton, Brenda P Williams, Angela Bithell and Noel J. Buckley

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1431

    5. You have free access to this content
      TNF, acting through inducibly expressed TNFR2, drives activation and cell cycle entry of c-Kit+ cardiac stem cells in ischemic heart disease (pages 1881–1892)

      Rafia S. Al-Lamki, Wanhua Lu, Jun Wang, Jun Yang, Timothy J. Sargeant, Richard Wells, Chenqu Suo, Penny Wright, Martin Goddard, Qunhua Huang, Amir H. Lebastchi, George Tellides, Yingqun Huang, Wang Min, Jordan S. Pober and John R. Bradley

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1433

    6. You have free access to this content
      Expression levels of endoglin distinctively identify hematopoietic and endothelial progeny at different stages of yolk sac hematopoiesis (pages 1893–1901)

      Luciene Borges, Michelina Iacovino, Naoko Koyano-Nakagawa, June Baik, Daniel J. Garry, Michael Kyba and Rita C. R. Perlingeiro

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1434

    7. You have free access to this content
      HIF-1α is upregulated in human mesenchymal stem cells (pages 1902–1909)

      Sami Palomäki, Mika Pietilä, Saara Laitinen, Juha Pesälä, Raija Sormunen, Petri Lehenkari and Peppi Koivunen

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1435

    8. You have free access to this content
      Polycomb group gene Ezh2 regulates mammary gland morphogenesis and maintains the luminal progenitor pool (pages 1910–1920)

      Ewa Malgorzata Michalak, Karim Nacerddine, Alexandra Pietersen, Vincent Beuger, Inka Pawlitzky, Paulien Cornelissen-Steijger, Ellen Wientjens, Ellen Tanger, Jost Seibler, Maarten van Lohuizen and Jos Jonkers

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1437

    9. You have free access to this content
    10. You have free access to this content
    11. You have free access to this content
    12. You have free access to this content
      Constitutive activation of RANK disrupts mammary cell fate leading to tumorigenesis (pages 1954–1965)

      Pasquale Pellegrini, Alex Cordero, Marta Ines Gallego, William C. Dougall, Muñoz Purificación, Miguel Angel Pujana and Eva Gonzalez-Suarez

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1454

    13. You have full text access to this OnlineOpen article
      Biliary tree stem cells, precursors to pancreatic committed progenitors: Evidence for possible life-long pancreatic organogenesis (pages 1966–1979)

      Yunfang Wang, Giacomo Lanzoni, Guido Carpino, Cai-Bin Cui, Juan Dominguez-Bendala, Eliane Wauthier, Vincenzo Cardinale, Tsunekazu Oikawa, Antonello Pileggi, David Gerber, Mark E. Furth, Domenico Alvaro, Eugenio Gaudio, Luca Inverardi and Lola M. Reid

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1460

  6. Translational and Clinical Research

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      Multipotent stromal cells induce human regulatory T cells through a novel pathway involving skewing of monocytes toward anti-inflammatory macrophages (pages 1980–1991)

      Sara M. Melief, Ellen Schrama, Martijn H. Brugman, Machteld M. Tiemessen, Martin J. Hoogduijn, Willem E. Fibbe and Helene Roelofs

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1432

    2. You have free access to this content
      Airway basal cells of healthy smokers express an embryonic stem cell signature relevant to lung cancer (pages 1992–2002)

      Renat Shaykhiev, Rui Wang, Rachel K. Zwick, Neil R. Hackett, Roland Leung, Malcolm A. S. Moore, Camelia S. Sima, Ion Wa Chao, Robert J. Downey, Yael Strulovici-Barel, Jacqueline Salit and Ronald G. Crystal

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1459

    3. You have free access to this content
      Reversing bone loss by directing mesenchymal stem cells to bone (pages 2003–2014)

      Wei Yao, Min Guan, Junjing Jia, Weiwei Dai, Yu-An E. Lay, Sarah Amugongo, Ruiwu Liu, David Olivos, Mary Saunders, Kit S. Lam, Jan Nolta, Diana Olvera, Robert O. Ritchie and Nancy E. Lane

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1461

  7. Embryonic Stem Cells/Induced Pluripotent Stem Cells

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      Brief report: A human induced pluripotent stem cell model of cernunnos deficiency reveals an important role for XLF in the survival of the primitive hematopoietic progenitors (pages 2015–2023)

      Katarzyna Tilgner, Irina Neganova, Chatchawan Singhapol, Gabriele Saretzki, Jumana Yousuf Al-Aama, Jerome Evans, Vera Gorbunova, Andrew Gennery, Stefan Przyborski, Miodrag Stojkovic, Lyle Armstrong, Penny Jeggo and Majlinda Lako

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1456

  8. Tissue-Specific Stem Cells

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content
      Brief report: CD24 and CD44 mark human intestinal epithelial cell populations with characteristics of active and facultative stem cells (pages 2024–2030)

      Adam D. Gracz, Megan K. Fuller, Fengchao Wang, Linheng Li, Matthias Stelzner, James C.Y. Dunn, Martin G. Martin and Scott T. Magness

      Article first published online: 4 OCT 2013 | DOI: 10.1002/stem.1391

  9. Retraction

    1. Top of page
    2. Regenerative Medicine
    3. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    4. Regenerative Medicine
    5. Stem Cell Technology: Epigenetics, Genomics, Proteomics, and Metabonomics
    6. Tissue-Specific Stem Cells
    7. Translational and Clinical Research
    8. Embryonic Stem Cells/Induced Pluripotent Stem Cells
    9. Tissue-Specific Stem Cells
    10. Retraction
    1. You have free access to this content

SEARCH

SEARCH BY CITATION