SEARCH

SEARCH BY CITATION

Keywords:

  • SERT;
  • 5-HT;
  • uptake;
  • knockout;
  • overexpression;
  • serotonergic;
  • voltammetry;
  • 1B;
  • CP94253;
  • SB224289

Abstract

Serotonin-1B (5-HT1B) autoreceptors are located in serotonin (5-HT) terminals, along with serotonin transporters (SERT), and play a critical role in autoregulation of serotonergic neurotransmission and are implicated in disorders of serotonergic function, particularly emotional regulation. SERT modulates serotonergic neurotransmission by high-affinity reuptake of 5-HT. Alterations in SERT activity are associated with increased risk for depression and anxiety. Several neurotransmitter receptors are known to regulate SERT Km and Vmax, and previous work suggests that 5-HT1B autoreceptors may regulate 5-HT reuptake, in addition to modulating 5-HT release and synthesis. We used rotating disk electrode voltammetry to investigate 5-HT1B autoreceptor regulation of SERT-mediated 5-HT uptake into synaptosomes. The selective 5-HT1B antagonist SB224289 decreased SERT activity in synaptosomes prepared from wild-type but not 5-HT1B knockout mice, whereas SERT uptake was enhanced after pretreatment with the selective 5-HT1B agonist CP94253. Furthermore, SERT activity varies as a function of 5-HT1B receptor expression—specifically, genetic deletion of 5-HT1B decreased SERT function, while viral-mediated overexpression of 5-HT1B autoreceptors in rat raphe neurons increased SERT activity in rat hippocampal synaptosomes. Considered collectively, these results provide evidence that 5-HT1B autoreceptors regulate SERT activity. Because SERT clearance rate varies as a function of 5-HT1B autoreceptor expression levels and is modulated by both activation and inhibition of 5-HT1B autoreceptors, this dynamic interaction may be an important mechanism of serotonin autoregulation with therapeutic implications. Synapse, 2012. © 2012 Wiley Periodicals, Inc.