Get access

Topological polymer chemistry by dynamic selection from electrostatic polymer self-assembly



A collection of recent developments in topological polymer chemistry is presented. First, topological isomerism occurring on randomly coiled, flexible polymer molecules having cyclic and linear structures is discussed. Second, an electrostatic self-assembly and covalent fixation strategy has been developed for the synthesis of polymeric topological isomers. These isomers have double cyclic, manacle-, and θ-shaped constructions, and are prepared by using either linear or star telechelic polymer precursors having moderately strained cyclic ammonium salt groups, which carry multifunctional carboxylate counteranions. A technique of reversed-phase chromatography (RPC) is demonstrated as an effective means to separate polymers with different topologies, especially polymeric topological isomers. A further extension of topological polymer chemistry has been observed by dynamic selection from electrostatic polymer self-assembly to enable the effective formation of tadpole-shaped, cyclic-linear hybrid topologies. © 2005 The Japan Chemical Journal Forum and Wiley Periodicals, Inc. Chem Rec 5: 17–26; 2005: Published online in Wiley InterScience ( DOI 10.1002/tcr.20029