SEARCH

SEARCH BY CITATION

Abstract

Analogies have been argued to be central in the process of establishing conceptual growth, making overt connections and carryover into an intended cognitive domain, and providing a generative venue for developing conceptual understanding inherent in constructivist learning. However, students' specific uses of analogies for constructing arguments are not well understood. Specifically, the results of preservice teachers' knowledge gains are not widely studied. Although we would hope that engaging preservice science teachers in exemplary lessons would assist them in using and generating analogies more expertly, it is not clear whether or how such curricula would affect their learning or teaching. This study presents an existence proof of how preservice science teachers used analogies embedded in their course materials Physics by Inquiry. This fine-grained analysis of small group discourse revealed three distinct roles of analogies including the development of: (a) cognitive process skills, (b) scientific conceptual understanding, and (c) social contexts for problem solving. Results suggest that preservice teachers tend to overgeneralize the analogies inserted by curriculum materials, map irrelevant features of analogies into collaborative problem solving, and generate personal analogies, which counter scientific concept development. Although the authors agree with the importance of collaborative problem solving and the insertion of analogies for preservice teachers' conceptual development, we believe much more needs to be understood before teachers can be expected to construct and sustain effective learning environments that rely on using analogies expertly. Implications for teacher preparation are also discussed. © 2003 Wiley Periodicals, Inc. J Res Sci Teach 40: 443–463, 2003