SEARCH

SEARCH BY CITATION

References

  • AAAS. (2009). Vision and change in undergraduate biology education: A call to action. Washington, DC: American Association for the Advancement of Science.
  • Bahar, M., Johnstone, A. H., & Hansell, M. H. (1999). Revisiting learning difficulties in biology. Journal of Biological Education, 33(2), 8486. doi: 10.1080/00219266.1999.9655648
  • Ben-Zvi Assaraf, O., & Orion, N. (2005). Development of system thinking skills in the context of earth system education. Journal of Research in Science Teaching, 42(5), 518560.
  • Booth Sweeney, L., & Sterman, J. D. (2007). Thinking about systems: Student and teacher conceptions of natural and social systems. System Dynamics Review, 23(2–3), 285311.
  • Brandstädter, K., Harms, U., & Großschedl, J. (2012). Assessing system thinking through different concept-mapping practices. International Journal of Science Education, 34(14), 21472170. doi: 10.1080/09500693.2012.716549
  • Bray-Speth, E., Long, T. M., Pennock, R. T., & Ebert-May, D. (2009). Using Avida-ED for teaching and learning about evolution in undergraduate Introductory Biology courses. Evolution: Education and Outreach, 2, 415428.
  • Brewe, E. (2008). Modeling theory applied: Modeling instruction in introductory physics. American Journal of Physics, 76, 1155.
  • Brewer, W. F., & Nakamura, G. V., (1984). The nature and functions of schemas (No. 325). University of Illinois at Urbana-Champaign. Retrieved from https://www.ideals.illinois.edu/handle/2142/17542
  • Feltovich, P. J., Coulson, R. L., & Spiro, R. J. (2001). Learners' (mis)understanding of important and difficult concepts: A challenge to smart machines in education. In K. Forbus & P. J. Feltovich (Eds.), Smart machines in education: The coming revolution in educational technology (pp. 349375). Menlo Park, CA: AAAI/MIT Press. Retrieved from http://dl.acm.org/citation.cfm?id=570962
  • Gentner, D., & Markman, A. B. (1997). Structure mapping in analogy and similarity. American Psychologist, 52(1), 4556. doi: 10.1037/0003-066X.52.1.45
  • Goel, A., & Stroulia, E. (1996). Functional device models and model-based diagnosis in adaptive design. Artificial Intelligence for Engineering, Design, Analysis and Manufacturing, 10(04), 355370. doi: 10.1017/S0890060400001670
  • Greca, I. M., & Moreira, M. A. (2000). Mental models, conceptual models, and modelling. International Journal of Science Education, 22(1), 111. doi: 10.1080/095006900289976
  • Haak, D. C., HilleRisLambers, J., Pitre, E., & Freeman, S. (2011). Increased structure and active learning reduce the achievement gap in Introductory Biology. Science, 332(6034), 12131216. doi: 10.1126/science.1204820
  • Hay, D., Kinchin, I., & Lygo-Baker, S. (2008). Making learning visible: The role of concept mapping in higher education. Studies in Higher Education, 33(3), 295311.
  • Hmelo, C. E., Holton, D. L., & Kolodner, J. L. (2000). Designing to learn about complex systems. Journal of Learning Science, 9(3), 247298.
  • Hmelo-Silver, C. E., & Azevedo, R. (2006). Understanding complex systems: Some core challenges. Journal of the Learning Sciences, 15(1), 5361.
  • Hmelo-Silver, C. E., Marathe, S., & Liu, L. (2007). Fish swim, rocks sit, and lungs breathe: Expert-novice understanding of complex systems. Journal of Learning Science, 16(3), 307331.
  • Hung, W. (2008). Enhancing systems-thinking skills with modelling. British Journal of Educational Technology, 39(6), 10991120.
  • Ifenthaler, D. (2010). Relational, structural, and semantic analysis of graphical representations and concept maps. Educational Technology Research and Development, 58(1), 8197.
  • Ifenthaler, D., Masduki, I., & Seel, N. M. (2011). The mystery of cognitive structure and how we can detect it: Tracking the development of cognitive structures over time. Instructional Science, 39(1), 4161.
  • Jacobson, M. J., & Wilensky, U. (2006). Complex systems in education: Scientific and educational importance and implications for the learning sciences. Journal of the Learning Sciences, 15(1), 1134.
  • Jimenez-Aleixandre, M. P., Rodriguez, A. B., & Duschl, R. A. (2000). “ Doing the lesson” or “doing science:” Argument in high school genetics. Science Education, 84(6), 757792.
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge, MA: Harvard University Press.
  • Johnstone, A. H. (1991). Why is science difficult to learn? Things are seldom what they seem. Journal of Computer Assisted Learning, 7(2), 7583.
  • Jonassen, D., Strobel, J., & Gottdenker, J. (2005). Model building for conceptual change. Interactive Learning Environment, 13(1–2), 1537.
  • Kinchin, I. M., Hay, D. B., & Adams, A. (2000). How a qualitative approach to concept map analysis can be used to aid learning by illustrating patterns of conceptual development. Educational Research, 42(1), 4357.
  • Lagnado, D. A., Waldmann, M. R., Hagmayer, Y., & Sloman, S. A. (2007). Beyond covariation: Cues to causal structure. In A. Gopnik & L. Schulz (Eds.), Causal learning: Psychology, philosophy, and computation (pp. 154172). Oxford, UK: Oxford University Press.
  • Liu, L., & Hmelo-Silver, C. (2009). Promoting complex systems learning through the use of conceptual representations in hypermedia. Journal of Research in Science Teaching, 46(9), 10231040.
  • Long, T., Dauer, J., Kostelnik, K., Momsen, J., Wyse, S., Bray Speth, E., & Ebert-May, D. Fostering ecoliteracy through model-based instruction. Frontiers in Ecology and the Environment (in press).
  • Marbach-Ad, G., & Stavy, R. (2000). Students' cellular and molecular explanations of genetic phenomena. Journal of Biological Education, 34(4), 200205. doi: 10.1080/00219266.2000.9655718
  • Martin, E., Prosser, M., Trigwell, K., Ramsden, P., & Benjamin, J. (2000). What university teachers teach and how they teach it. Instructional Science, 28, 387412.
  • Mathieu, J. E., Heffner, T. S., Goodwin, G. F., Salas, E., & Cannon-Bowers, J. A. (2000). The Influence of Shared Mental Models on Team Process and Performance. Journal of Applied Psychology, 85(2), 273283. doi: 10.1037/0021-9010.85.2.273
  • Mervis, J. (2011). Weed-out courses hamper diversity. Science, 334(6061), 1333. doi: 10.1126/science.334.6061.1333
  • Mintzes, J., & Quinn, H. J. (2007). Knowledge restructuring in biology: Testing a punctuated model of conceptual change. International Journal of Science and Mathematics Education, 5, 2812306.
  • National Research Council, (2012). A framework for K-12 science education: Practices, crosscutting concepts, and core ideas. committee on a conceptual framework for new K-12 science education standards. Board on Science Education, Division of Behavioral and Social Sciences and Education. Washington, DC: The National Academies Press.
  • Nehm, R., Poole, T. M., Lyford, M. E., Hoskins, S. G., Carruth, L., Ewers, B. E., & Colberg, P. J. (2009). Does the segregation of evolution in biology textbooks and introductory courses reinforce students' faulty mental models of biology and evolution? Evolution: Education and Outreach, 2(3), 527532.
  • Nehm, R., & Reilly, L. (2007). Biology majors' knowledge and misconceptions of natural selection. BioScience, 57(3), 263272.
  • Nehm, R., & Ridgway, J. (2011). What do experts and novices “see” in evolutionary problems? Evolution: Education and Outreach, 4(4), 666679.
  • Nehm, R., & Schonfeld, I. S. (2008). Measuring knowledge of natural selection: A comparison of the CINS, an open-response instrument, and an oral interview. Journal of Research in Science Teaching, 45(10), 11311160.
  • Novak, J. D. (1998). Learning, creating, and using knowledge: Concept maps as facilitative tools in schools and corporations. Mahwah, NJ: L. Erlbaum Associates.
  • Novak, J. D., & Canas, A. J. (2006). The origins of the concept mapping tool and the continuing evolution of the tool. Information Visualization Journal, 5(3), 175184.
  • Pearsall, N. R., Skipper, J. E. J., & Mintzes, J. J. (1997). Knowledge restructuring in the life sciences: A longitudinal study of conceptual change in biology. Science Education, 81(2), 193215.
  • Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D., & the R Development Core Team (2-L 01). (2012). nlme: Linear and nonlinear mixed effects models.
  • Plate, R. (2010). Assessing individuals' understanding of nonlinear causal structures in complex systems. System Dynamics Review, 26(1), 1933. doi: 10.1002/sdr.432
  • Ruiz-Primo, M. A., & Shavelson, R. J. (1996). Problems and issues in the use of concept maps in science assessment. Journal of Research in Science Teaching, 33(6), 569600.
  • Rumelhart, D. E., & Norman, D. (1978). Accretion, tuning and restructuring. In J. Cotton & R. Klatzky (Eds.), Semantic factors in cognition (pp. 3754). Hillsdale, NJ.: Erlbaum Lawerence Associates.
  • Rumelhart, D. E., & Ortony, A. (1977). The representation of knowledge in memory. In R. C. Anderson R. J. Spiro & W. E. Montague (Eds.), Schooling and the Acquisition of Knowledge. (pp. 99135). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Schwarz, C. V., Reiser, B. J., Davis, E. A., Kenyon, L., Achér, A., Fortus, D.Krajcik, J., (2009). Developing a learning progression for scientific modeling: Making scientific modeling accessible and meaningful for learners. Journal of Research in Science Teaching, 46(6), 632654.
  • Seel, N. (2003). Model-centered learning and instruction. Technology, Instruction, Cognition and Learning, 1(1), 5985.
  • Shavelson, R. J., Ruiz-Primo, M. A., & Wiley, E. W. (2005). Windows into the mind. Higher Education, 49(4), 413430.
  • Sinatra, G. M., Brem, S. K., & Evans, E. M. (2008). Changing minds? Implications of conceptual change for teaching and learning about biological evolution. Evolution: Education and Outreach, 1(2), 189195.
  • Smith, M. U. (2010a). Current status of research in teaching and learning evolution: II. Pedagogical issues. Science & Education, 19(6–8), 539571.
  • Smith, M. U. (2010b). Current status of research in teaching and learning evolution: I. Philosophical/epistemological issues. Science & Education, 19(6–8), 523538.
  • Sommer, C., & Lücken, M. (2010). System competence—Are elementary students able to deal with a biological system? Nordic Studies in Science Education, 6(2), 125143.
  • Stewart, M. (2012). Joined up thinking? Evaluating the use of concept-mapping to develop complex system learning. Assessment & Evaluation in Higher Education, 37(3), 349368.
  • Van Meter, P. (2001). Drawing construction as a strategy for learning from text. Journal of Educational Psychology, 93(1), 129.
  • Vattam, S. S., Goel, A. K., Rugaber, S., Hmelo-Silver, C. E., Jordan, R., Gray, S., & Sinha, S. (2011). Understanding complex natural systems by articulating structure–behavior–function models. Journal of Educational Technology and Society, 14(1), 66681.
  • Vosniadou, S. (1994). Capturing and modeling the process of conceptual change. Learning and Instruction, 4(1), 4569. doi: 10.1016/0959-4752(94)90018-3
  • Wilensky, U., & Resnick, M. (1999). Thinking in levels: A dynamic systems approach to making sense of the world. Journal of Science Education and Technology, 8(1), 319.
  • Zajchowski, R., & Martin, J. (1993). Differences in the problem solving of stronger and weaker novices in physics: Knowledge, strategies, or knowledge structure? Journal of Research in Science Teaching, 30(5), 459470. doi: 10.1002/tea.3660300505