Conceptual difficulties experienced by senior high school students of electrochemistry: Electric circuits and oxidation-reduction equations

Authors


Abstract

The purpose of this research was to investigate students' understanding of electrochemistry following a course of instruction. A list of conceptual and propositional knowledge statements was formulated to identify the knowledge base necessary for students to understand electric circuits and oxidation-reduction equations. The conceptual and propositional knowledge statements provided the framework for the development of a semistructured interview protocol which was administered to 32 students in their final year of high school chemistry. The interview questions about electric circuits revealed that several students in the sample were confused about the nature of electric current both in metallic conductors and in electrolytes. Students studying both physics and chemistry were more confused about current flow in metallic conductors than students who were only studying chemistry. In the section of the interview which focused on oxidation and reduction, many students experienced problems in identifying oxidation-reduction equations. Several misconceptions relating to the inappropriate use of definitions of oxidation and reduction were identified. The data illustrate how students attempted to make sense of the concepts of electrochemistry with the knowledge they had already developed or constructed. The implications of the research are that teachers, curriculum developers, and textbook writers, if they are to minimize potential misconceptions, need to be cognizant of the relationship between physics and chemistry teaching, of the need to test for erroneous preconceptions about current before teaching about electrochemical (galvanic) and electrolytic cells, and of the difficulties experienced by students when using more than one model to explain scientific phenomena.

Ancillary